Predicting the Unknown (eBook)
XVII, 264 Seiten
Apress (Verlag)
978-1-4842-9505-2 (ISBN)
As a society, we're in a constant struggle to control uncertainty and predict the unknown. Quite often, we think of scientific fields and theories as being separate from each other. But a more careful investigation can uncover the common thread that ties many of those together. From ChatGPT, to Amazon's Alexa, to Apple's Siri, data science, and computer science have become part of our lives. In the meantime, the demand for data scientists has grown, as the field has been increasingly called the 'sexiest profession.'
This book attempts to specifically cover this gap in literature between data science, machine learning and artificial intelligence (AI). How was uncertainty approached historically, and how has it evolved since? What schools of thought exist in philosophy, mathematics, and engineering, and what role did they play in the development of data science? It uses the history of data science as a stepping stone to explain what the future might hold.
Predicting the Unknown provides the framework that will help you understand where AI is headed, and how to best prepare for the world that's coming in the next few years, both as a society and within a business. It is not technical and avoids equations or technical explanations, yet is written for the intellectually curious reader, and the technical expert interested in the historical details that can help contextualize how we got here.
What You'll Learn
- Explore the bigger picture of data science and see how to best anticipate future changes in that field
- Understand machine learning, AI, and data science
- Examine data science and AI through engaging historical and human-centric narratives
Who is This Book For
Business leaders and technology enthusiasts who are trying to understand how to think about data science and AI
Dr. Stylianos (Stelios) Kampakis is a data scientist, data science educator and blockchain expert with more than 10 years of experience. He has worked with decision makers from companies of all sizes: from startups to organizations like the US Navy, Vodafone ad British Land. His work expands multiple sectors including fintech (fraud detection and valuation models), sports analytics, health-tech, general AI, medical statistics, predictive maintenance and others. He has worked with many different types of technologies, from statistical models, to deep learning to blockchain and he has two patents pending to his name. He has also helped many people follow a career in data science and technology.
As a society, we're in a constant struggle to control uncertainty and predict the unknown. Quite often, we think of scientific fields and theories as being separate from each other. But a more careful investigation can uncover the common thread that ties many of those together. From ChatGPT, to Amazon's Alexa, to Apple's Siri, data science, and computer science have become part of our lives. In the meantime, the demand for data scientists has grown, as the field has been increasingly called the "e;sexiest profession."e; This book attempts to specifically cover this gap in literature between data science, machine learning and artificial intelligence (AI). How was uncertainty approached historically, and how has it evolved since? What schools of thought exist in philosophy, mathematics, and engineering, and what role did they play in the development of data science? It uses the history of data science as a stepping stone to explain what the future might hold. Predicting the Unknown provides the framework that will help you understand where AI is headed, and how to best prepare for the world that's coming in the next few years, both as a society and within a business. It is not technical and avoids equations or technical explanations, yet is written for the intellectually curious reader, and the technical expert interested in the historical details that can help contextualize how we got here. What You'll LearnExplore the bigger picture of data science and see how to best anticipate future changes in that fieldUnderstand machine learning, AI, and data scienceExamine data science and AI through engaging historical and human-centric narratives Who is This Book ForBusiness leaders and technology enthusiasts who are trying to understand how to think about data science and AI
Erscheint lt. Verlag | 15.6.2023 |
---|---|
Zusatzinfo | XVII, 264 p. 55 illus., 26 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Algorithmen | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Naturwissenschaften | |
Schlagworte | AI • Big Data • Blockchain • Data Science • data science for business leaders • data science for non-experts • machine learning • Statistical Modelling • Statistics • Uncertainty • Web 3.0 |
ISBN-10 | 1-4842-9505-6 / 1484295056 |
ISBN-13 | 978-1-4842-9505-2 / 9781484295052 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 6,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich