Radiation Therapy Dosimetry
CRC Press (Verlag)
978-0-367-68677-2 (ISBN)
Covers the basic principles and practical use of radiation dosimeters in radiation oncology clinics across the full range of current modalities.
Focuses on providing practical guidance for those using these detectors in the clinic.
Explains which detector is more suitable for a particular application.
Discusses the state of the art in radiotherapy approaches, from radiosurgery and MR-guided systems to advanced range verification techniques in proton therapy.
Gives critical comparisons of dosimeters for photon, electron, and proton therapies.
Arash Darafsheh, Ph.D., is an associate professor of Radiation Oncology, a certified medical physicist by the American Board of Radiology (ABR), and the PI of the Optical Imaging and Dosimetry Lab at the Department of Radiation Oncology at the Washington University School of Medicine in St. Louis. He holds Ph.D. and M.Sc. in Optical Science and Engineering, and an M.Sc. in Radiation Medicine Engineering. His current research interests include optical methods in medical physics, detector development for radiotherapy, ultra-high dose rate FLASH radiotherapy, photodynamic therapy, and super-resolution microscopy. He has served as a mentor for many graduate students, postdoctoral research fellows, and clinical residents. He has published over 90 journal and conference papers, six book chapters, and one patent. He has been awarded research grants from the National Institutes of Health (NIH) and the American Association of Physicists in Medicine (AAPM). He is a member of AAPM and senior member of the Optical Society of America (OSA) and SPIE-the international society for optics and photonics. He has served as an associate editor for Medical Physics and as a reviewer for numerous scientific journals.
Part I: Radiation Dosimeters and Dosimetry Techniques. Fundamentals of Radiation Physics and Dosimetry. Ionization Chamber Instrumentation. Calorimetry. Semiconductor Dosimeters. Film Dosimetery. Thermoluminescence Dosimetery. Optically Stimulated Luminescent Dosimeters in Clinical Practice. EPID-Based Dosimetry. Scintillation Fiber Optic Dosimetry. Cherenkov and Scintillation Imaging Dosimetry. Clinical Considerations and Dosimeters for In Vivo Dosimetry. Dosimeters and Devices for IMRT QA. Area and Individual Radiation Monitoring. Monte Carlo Techniques in Medical Physics. Part II: Brachytherapy. Brachytherapy Dosimetry. Part III: External Beam Radiation therapy. Photon Beam Dosimetry of Conventional Medical Linear Accelerators. Dosimetric Considerations with Flattening Filter-Free Beams. Linac-Based SRS/SBRT Dosimetry. Cyberknife and Zap-X Dosimetry. Dosimetry in the Presence of Magnetic Fields. Helical Tomotherapy Treatment and Dosimetry. Gamma Knife Dosimetry. Kilovoltage X-Ray Beam Dosimetry. Electron Dosimetry. Proton Therapy Dosimetry. Ion Range and Dose Monitoring with Positron Emission Tomography. Prompt Gamma Detection for Proton Range Verification. Acoustic-Based Proton Range Verification. Proton Radiography and Proton Tomography. Part IV: Imaging modalities. Dosimetry of Imaging Modalities in Radiation Therapy.
Erscheinungsdatum | 10.07.2023 |
---|---|
Zusatzinfo | 44 Tables, black and white; 45 Illustrations, color; 132 Illustrations, black and white |
Verlagsort | London |
Sprache | englisch |
Maße | 216 x 280 mm |
Gewicht | 930 g |
Themenwelt | Medizin / Pharmazie ► Allgemeines / Lexika |
Medizinische Fachgebiete ► Radiologie / Bildgebende Verfahren ► Radiologie | |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
ISBN-10 | 0-367-68677-5 / 0367686775 |
ISBN-13 | 978-0-367-68677-2 / 9780367686772 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich