Responsible Data Science (eBook)
VIII, 221 Seiten
Springer Nature Singapore (Verlag)
978-981-19-4453-6 (ISBN)
This book comprises select proceedings of the 7th International Conference on Data Science and Engineering (ICDSE 2021). The contents of this book focus on responsible data science. This book tries to integrate research across diverse topics related to data science, such as fairness, trust, ethics, confidentiality, transparency, and accuracy. The chapters in this book represent research from different perspectives that offer novel theoretical implications that span multiple disciplines. The book will serve as a reference resource for researchers and practitioners in academia and industry.
Jimson Mathew is currently a professor in the Department of the Computer Science and Engineering, Indian Institute of Technology Patna, India. He received a master's in computer engineering from Nanyang Technological University, Singapore, and a Ph.D. degree in computer engineering from the University of Bristol, Bristol, UK. He has held positions with the Centre for Wireless Communications, the National University of Singapore, Bell Laboratories Research Lucent Technologies North Ryde, Australia, Royal Institute of Technology KTH, Stockholm, Sweden, and Department of Computer Science, University of Bristol, UK. He is a Senior Member of IEEE. He has previously served as Guest Editor for ACM TECS. He also regularly serves on the program committee of top international conferences and holds multiple patents. His research interests include fault-tolerant computing, computer vision, machine learning, and IoT systems.
Santhosh Kumar G is a full Professor at the Department of Computer Science, Cochin University of Science and Technology, Kerala, India. His research interests include cyber-physical systems, machine learning, and natural language processing. He is a senior member of the IEEE and the ACM, published several publications, and co-authored a book on Data Science.
Deepak P is an Associate Professor of Computer Science at Queen's University Belfast (UK) and an adjunct faculty member at IIT Madras (India). His research interests include ethics for machine learning, natural language processing, and information retrieval. He is a senior member of the IEEE and the ACM and has authored over 100 publications, authored/edited three books, and is an inventor on over 10 patents.
Joemon M Jose has been an active researcher in information retrieval (IR) since 1993 and has published over 300 journal and conference articles on information retrieval. He, along with co-authors, has received best paper/student paper awards at leading conferences, including ACM SIGIR, IIiX, CHIIR, MMM, and the BCS ECIR. He has supervised, as primary supervisor, 20 Ph.D. students and over 20 RAs and postdoctoral researchers. He has chaired several conferences, was one of the program committee chairs for the ECIR 2017 and 2020 conferences, regularly acts as a primary reviewer for A/A* conferences, and has attracted over 3M pounds in research funding.
This book comprises select proceedings of the 7th International Conference on Data Science and Engineering (ICDSE 2021). The contents of this book focus on responsible data science. This book tries to integrate research across diverse topics related to data science, such as fairness, trust, ethics, confidentiality, transparency, and accuracy. The chapters in this book represent research from different perspectives that offer novel theoretical implications that span multiple disciplines. The book will serve as a reference resource for researchers and practitioners in academia and industry.
Erscheint lt. Verlag | 14.11.2022 |
---|---|
Reihe/Serie | Lecture Notes in Electrical Engineering | Lecture Notes in Electrical Engineering |
Zusatzinfo | VIII, 221 p. 68 illus., 50 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Algorithmen | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Naturwissenschaften | |
Technik ► Nachrichtentechnik | |
Schlagworte | Algorithms for Large Data Sets • Applications of Deep learning for Cyber security • Cluster, Cloud, & Grid Computing • ICDSE 2021 • ICDSE Conference Proceedings • Information Discovery & Query processing • Knowledge Engineering • Machine Learning for Cybersecurity • Management of Very Large Data Systems • Peer-to-Peer Algorithms & Networks • Responsible data science • Web engineering |
ISBN-10 | 981-19-4453-9 / 9811944539 |
ISBN-13 | 978-981-19-4453-6 / 9789811944536 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 7,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich