Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Transparency and Interpretability for Learned Representations of Artificial Neural Networks

(Autor)

Buch | Softcover
XXI, 211 Seiten
2022 | 1st ed. 2022
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-40003-3 (ISBN)

Lese- und Medienproben

Transparency and Interpretability for Learned Representations of Artificial Neural Networks - Richard Meyes
CHF 119,80 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI's decision-making remain unanswered. Thus, a young research field coined with the general term Explainable AI (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed lighton how to adopt an empirical neuroscience inspired approach to investigate a neural network's learned representation in the same spirit as neuroscientific studies of the brain.

lt;b>Richard Meyes is head of the research group "Interpretable Learning Models" at the institute of Technologies and Management of Digital Transformation at the University of Wuppertal. His current research focusses on transparency and interpretability of decision-making processes of artificial neural networks.

Introduction.- Background & Foundations.- Methods and Terminology.- Related Work.- Research Studies.- Transfer Studies.- Critical Reflection & Outlook.- Summary.

Erscheinungsdatum
Zusatzinfo XXI, 211 p. 73 illus., 70 illus. in color. Textbook for German language market.
Verlagsort Wiesbaden
Sprache englisch
Maße 148 x 210 mm
Gewicht 347 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Biologie Humanbiologie
Schlagworte Artificial Neural Networks • Deep learning • Digital transformation • explainability • Explainable AI • Interpretability • Learned Representation • Neuroscience • Transparency • XAI
ISBN-10 3-658-40003-X / 365840003X
ISBN-13 978-3-658-40003-3 / 9783658400033
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20