Photoelectron-Ion Correlation in Photoionization of a Hydrogen Molecule and Molecule-Photon Dynamics in a Cavity
Seiten
2022
|
1st ed. 2022
Springer Verlag, Singapore
978-981-19-1777-6 (ISBN)
Springer Verlag, Singapore
978-981-19-1777-6 (ISBN)
This book presents the latest theoretical studies giving new predictions and interpretations on the quantum correlation in molecular dynamics induced by ultrashort laser pulses. The author quantifies the amount of correlation in terms of entanglement by employing methods developed in quantum information science, in particular applied to the photoionization of a hydrogen molecule. It is also revealed that the photoelectron–ion correlation affects the vibrational dynamics of the molecular ion and induces the attosecond-level time delay in the molecular vibration. Furthermore, the book also presents how molecular vibration can couple to photons in a plasmoic nanocavity.
Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between thephotoelectron and the molecular ion to describe the ion’s dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented.
Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between thephotoelectron and the molecular ion to describe the ion’s dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented.
Takanori Nishi obtained his Ph.D. degree in 2021 from the department of chemistry at The University of Tokyo in the group of Professor Kaoru Yamanouchi. His research interest is ultrafast molecular dynamics, attosecond laser pulse, and quantum entanglement.
1. General introduction.- 2. Entanglement and coherence created by photoionization of H_2.- 3. Time delay in the coherent vibrational motion of H_2^+ created by photoionization of H_2.- 4. Molecule in a plasmonic nanocavity.- 5. Summary and outlook.- 6. Appendices.
Erscheinungsdatum | 09.05.2022 |
---|---|
Reihe/Serie | Springer Theses |
Zusatzinfo | 19 Illustrations, color; 4 Illustrations, black and white; XII, 95 p. 23 illus., 19 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Schlagworte | Attosecond science • Molecule in the laser field • Nanocavity • photoionization • quantum entanglement |
ISBN-10 | 981-19-1777-9 / 9811917779 |
ISBN-13 | 978-981-19-1777-6 / 9789811917776 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Quantenmechanik | Spektroskopie | Statistische Thermodynamik
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 83,90
Thermodynamik | Kinetik | Elektrochemie
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 83,90
Set aus Lehrbuch und Arbeitsbuch
Buch | Hardcover (2022)
Wiley-VCH (Verlag)
CHF 149,95