Nicht aus der Schweiz? Besuchen Sie lehmanns.de
State of the Art on Grammatical Inference Using Evolutionary Method -  Hari Mohan Pandey

State of the Art on Grammatical Inference Using Evolutionary Method (eBook)

eBook Download: PDF | EPUB
2021 | 1. Auflage
228 Seiten
Elsevier Science (Verlag)
978-0-12-822154-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
148,00 inkl. MwSt
(CHF 144,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
State of the Art on Grammatical Inference Using Evolutionary Method presents an approach for grammatical inference (GI) using evolutionary algorithms. Grammatical inference deals with the standard learning procedure to acquire grammars based on evidence about the language. It has been extensively studied due to its high importance in various fields of engineering and science. The book's prime purpose is to enhance the current state-of-the-art of grammatical inference methods and present new evolutionary algorithms-based approaches for context free grammar induction. The book's focus lies in the development of robust genetic algorithms for context free grammar induction. The new algorithms discussed in this book incorporate Boolean-based operators during offspring generation within the execution of the genetic algorithm. Hence, the user has no limitation on utilizing the evolutionary methods for grammatical inference. - Discusses and summarizes the latest developments in Grammatical Inference, with a focus on Evolutionary Methods - Provides an understanding of premature convergence as well as genetic algorithms - Presents a performance analysis of genetic algorithms as well as a complete look into the wide range of applications of Grammatical Inference methods - Demonstrates how to develop a robust experimental environment to conduct experiments using evolutionary methods and algorithms

Dr. Hari Mohan Pandey is Lecturer in Computer Science at Edge Hill University, UK. He is specialized in Computer Science & Engineering. His research area includes artificial intelligence, soft computing techniques, natural language processing, language acquisition and machine learning algorithms. He is author of various books in computer science engineering (algorithms, programming and evolutionary algorithms). He has published over 50 scientific papers in reputed journals and conferences, served as session chair, leading guest editor and delivered keynotes. He has been given the prestigious award 'The Global Award for the Best Computer Science Faculty of the Year 2015” award for completing INDO-US project 'GENTLE”, award (Certificate of Exceptionalism) from the Prime Minister of India and award for developing innovative teaching and learning models for higher-education. Previously, he worked as a research fellow in machine learning at Middlesex University, London where he worked on a European Commission project- DREAM4CAR. His role was to research and develop advanced machine learning techniques relevant to the project goals and to evaluate these on both project and reference data sets, to lead and manage relevant work packages in support of the Project, ensuring appropriate interfacing with partners.
State of the Art on Grammatical Inference Using Evolutionary Method presents an approach for grammatical inference (GI) using evolutionary algorithms. Grammatical inference deals with the standard learning procedure to acquire grammars based on evidence about the language. It has been extensively studied due to its high importance in various fields of engineering and science. The book's prime purpose is to enhance the current state-of-the-art of grammatical inference methods and present new evolutionary algorithms-based approaches for context free grammar induction. The book's focus lies in the development of robust genetic algorithms for context free grammar induction. The new algorithms discussed in this book incorporate Boolean-based operators during offspring generation within the execution of the genetic algorithm. Hence, the user has no limitation on utilizing the evolutionary methods for grammatical inference. - Discusses and summarizes the latest developments in Grammatical Inference, with a focus on Evolutionary Methods- Provides an understanding of premature convergence as well as genetic algorithms- Presents a performance analysis of genetic algorithms as well as a complete look into the wide range of applications of Grammatical Inference methods- Demonstrates how to develop a robust experimental environment to conduct experiments using evolutionary methods and algorithms
Erscheint lt. Verlag 13.11.2021
Sprache englisch
Themenwelt Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-12-822154-2 / 0128221542
ISBN-13 978-0-12-822154-9 / 9780128221549
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 28,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich