Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems
Springer International Publishing (Verlag)
978-3-030-50478-6 (ISBN)
lt;p>Derek A. Paley is Director of the Maryland Robotics Center and Willis H. Young Jr. Professor of Aerospace Engineering Education in the Department of Aerospace Engineering and the Institute for Systems Research at the University of Maryland. Paley received the B.S. degree in applied physics from Yale University in 1997 and the Ph.D. degree in mechanical and aerospace engineering from Princeton University in 2007. He received the National Science Foundation CAREER award in 2010, the Presidential Early Career Award for Scientists and Engineers in 2012, and the AIAA National Capital Section Engineer of the Year in 2015. Paley's research interests are in the area of dynamics and control, including cooperative control of autonomous vehicles, adaptive sampling with mobile sensor networks, and bioinspired robotic systems.
Norman M. Wereley is Department Chair and Minta Martin Professor of Aerospace Engineering at the University of Maryland. Wereley received the B.Eng. degree in mechanical engineering from McGill University and the M.S. and Ph.D. degrees in aeronautics and astronautics from the Massachusetts Institute of Technology. He received the American Helicopter Society Harry T. Jensen Award in 2011, the ASME Adaptive Structures and Material Systems Prize in 2012, the SPIE Smart Structures and Materials Lifetime Achievement Award in 2013, and the SPIE Smart Structures Product Implementation Award in 2013. Wereley's research interests include dynamics and control of smart structures and mechatronics applied to aerospace, automotive, and robotic systems, with emphasis on active and passive vibration isolation, shock mitigation, and actuation systems.Echinoderm inspired soft robotic systems for locomotion and grasping.- Fabrication and design of an octopus inspired soft robot.- Dynamics and control of a fish inspired propulsion in an underwater vehicle.- Fluidic actuation in artificial muscles for underwater applications
Erscheinungsdatum | 09.11.2021 |
---|---|
Zusatzinfo | X, 301 p. 77 illus., 72 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 480 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Bioinspired Robotics • Biomimetics • continuum robots • Soft Robotics • Underwater Robotics |
ISBN-10 | 3-030-50478-6 / 3030504786 |
ISBN-13 | 978-3-030-50478-6 / 9783030504786 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich