Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning in Clinical Neuroimaging -

Machine Learning in Clinical Neuroimaging

4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
Buch | Softcover
XI, 176 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-87585-5 (ISBN)
CHF 82,35 inkl. MwSt
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. 

The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.


Computational Anatomy.- Unfolding the medial temporal lobe cortex to characterize neurodegeneration due to Alzheimer's disease pathology using ex vivo imaging.- Distinguishing Healthy Ageing from Dementia: a Biomechanical Simulation of Brain Atrophy using Deep Networks.- Towards Self-Explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows.- Patch vs. global image-based unsupervised anomaly detection in MR brain scans of early Parkinsonian patients.- MRI image registration considerably improves CNN-based disease classification.- Dynamic Sub-graph Learning for Patch-based Cortical Folding Classification.- Detection of abnormal folding patterns with unsupervised deep generative models.- PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction.- Multi-Modal Brain Segmentation Using Hyper-Fused Convolutional Neural Network.- Robust Hydrocephalus Brain Segmentation via Globally and Locally Spatial Guidance.- Brain Networks and Time Series.- Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation.- Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data.- Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling.- Structure-Function Mapping via Graph Neural Networks.- Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics of Functional Connectivity.- H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning.- Constrained Learning of Task-related and Spatially-Coherent Dictionaries from Task fMRI Data.

Erscheinungsdatum
Reihe/Serie Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Zusatzinfo XI, 176 p. 65 illus., 53 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 296 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Schlagworte Applications • Artificial Intelligence • Bioinformatics • Brain Mapping • clinical neuroimaging • computational anatomy • Computer Science • computer vision • conference proceedings • Deep learning • functional magnetic resonance imaging • image enhancement • Image Processing • image reconstruction • Informatics • machine learning • Medical Image Analysis • Medical Image Computing • Medical Images • Neural networks • pattern recognition • Research
ISBN-10 3-030-87585-7 / 3030875857
ISBN-13 978-3-030-87585-5 / 9783030875855
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
CHF 48,85
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
CHF 27,90
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90