Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment - Changhua Hu, Hongdong Fan, Zhaoqiang Wang

Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment (eBook)

eBook Download: PDF
2021 | 1st ed. 2022
XV, 270 Seiten
Springer Singapore (Verlag)
978-981-16-2267-0 (ISBN)
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book addresses remaining life prediction and predictive maintenance of equipment. It systematically summarizes the key research findings made by the author and his team and focuses on how to create equipment performance degradation and residual life prediction models based on the performance monitoring data produced by currently used and historical equipment. Some of the theoretical results covered here have been used to make remaining life predictions and maintenance-related decisions for aerospace products such as gyros and platforms. Given its scope, the book offers a valuable reference guide for those pursuing theoretical or applied research in the areas of fault diagnosis and fault-tolerant control, remaining life prediction, and maintenance decision-making.



Changhua Hu is a Cheung Kong professor at Hi-Tech Institute of Xi'an, Shaanxi, China. He was a visiting scholar at University of Duisburg (September 2008-December 2008). His current research has been supported by the National Science Foundation of China. He has published two books and over 100 articles. His research interests include fault diagnosis and prognosis, life prediction, and fault-tolerant control.

Hongdong Fan received his B.Eng. degree in mechanical and electrical engineering, M.Sc., and Ph.D. degrees in control engineering all from Xi'an Institute of Hi-Tech, Xi'an, China, in 2003, 2006, and 2012, respectively. He is currently a lecturer of Xi'an Institute of Hi-Tech. His current research interest is in the area of reliability analysis, fault prognosis, and predictive maintenance.


Zhaoqiang Wang received the M.S. and Ph.D. degrees from High-Tech Institute of Xi'an, Xi'an, Shaanxi, China, in 2011 and 2015, respectively. He is currently an assistant professor with the High-Tech Institute of Xi'an, Xi'an, Shaanxi, China. He has published one book and over 20 articles in several journals, including the IEEE/ASME Transactions on Mechatronics, IEEE Transactions on Reliability, Mechanical Systems & Signal Processing, Reliability Engineering & System Safety, etc. He is also an active reviewer for a number of high-quality international journals. His research interests include machine learning, prognostics and health management, reliability modeling, maintenance scheduling, and inventory controlling. 



This book addresses remaining life prediction and predictive maintenance of equipment. It systematically summarizes the key research findings made by the author and his team and focuses on how to create equipment performance degradation and residual life prediction models based on the performance monitoring data produced by currently used and historical equipment. Some of the theoretical results covered here have been used to make remaining life predictions and maintenance-related decisions for aerospace products such as gyros and platforms. Given its scope, the book offers a valuable reference guide for those pursuing theoretical or applied research in the areas of fault diagnosis and fault-tolerant control, remaining life prediction, and maintenance decision-making.
Erscheint lt. Verlag 30.7.2021
Zusatzinfo XV, 270 p. 67 illus., 36 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Maschinenbau
Schlagworte Degradation Modelling • Maintenance • Quality Control, Reliability, Safety and Risk • Residual Life Prediction • Support Vector Machines • Wiener process
ISBN-10 981-16-2267-1 / 9811622671
ISBN-13 978-981-16-2267-0 / 9789811622670
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 24,30