Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Quantitative Phase Field Modelling of Solidification - Nikolas Provatas, Tatu Pinomaa, Nana Ofori-Opoku

Quantitative Phase Field Modelling of Solidification

Buch | Hardcover
174 Seiten
2021
CRC Press (Verlag)
978-0-367-76857-7 (ISBN)
CHF 179,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents a study of phase field modelling of solidification in metal alloy systems. It is divided in two main themes. The first half discusses several classes of quantitative multi-order parameter phase field models for multi-component alloy solidification. These are derived in grand potential ensemble, thus tracking solidification in alloys through the evolution of the chemical potentials of solute species rather than the more commonly used solute concentrations. The use of matched asymptotic analysis for making phase field models quantitative is also discussed at length, and derived in detail in order to make this somewhat abstract topic accessible to students. The second half of the book studies the application of phase field modelling to rapid solidification where solute trapping and interface undercooling follow highly non-equilibrium conditions. In this limit, matched asymptotic analysis is used to map phase field evolution equations onto the continuous growth model, which is generally accepted as a sharp-interface description of solidification at rapid solidification rates.

This book will be of interest to graduate students and researchers in materials science and materials engineering.

Key Features






Presents a clear path to develop quantitative multi-phase and multi-component phase field models for solidification and other phase transformation kinetics






Derives and discusses the quantitative nature of the model formulations through matched interface asymptotic analysis
Explores a framework for quantitative treatment of rapid solidification to control solute trapping and solute drag dynamics

Nikolas Provatas is a professor of physics at McGill University and holds a Canada Research Chair (Tier 1) in Computational Materials Science. He is also the Scientific Director of the McGill High Performance Computing Centre. From 2001-2012, he was a professor of Materials Science and Engineering at McMaster University. His research uses high-performance computing, dynamic adaptive mesh refinement techniques, condensed matter physics and experimentation to understand the fundamental origins of nano-microstructure pattern formation in non-equilibrium phase transformations, and the role of microstructure in materials processes. He has made numerous scientific contributions to the understanding of length scale selection in dendritic solidification and meta-stable phase formation in solid-state transformations in metal alloys. Nana Ofori-Opoku is a Research Scientist at Canadian Nuclear Laboratories Ltd. He received his doctorate in materials science from McMaster University, where he explored computational models for microstructure evolution in materials. He did his postdoctoral work at McGill University, followed by a NIST-CHiMaD fellowship at Northwestern University and the National Institute of Standards and Technology. His research continues to develop theoretical and computational tools to study microstructure evolution in nuclear materials and the dynamics of phase transformations. Tatu Pinomaa is a Senior Scientist at VTT Technical Research Centre of Finland Ltd. He received his doctor of science (tech) degree from Aalto University (Finland), where he developed phase field modeling techniques to investigate rapid solidification microstructures in metal additive manufacturing conditions. In his current research, he combines various computational approaches to predict the formation, evolution, and micromechanical response of metallic microstructures for industrial applications.

1. A Brief History of Phase Field Modelling. 2. Overview of the Book. 3. Recap of Grand Potential Thermodynamics. 4. Grand Potential Phase Field Functional. 5. Phase Field Dynamics. 6. Re-Casting the Phase Field Equations for Quantitative Simulations. 7. Equilibrium Properties of Grand Potential Funcional. 8. Thermal Fluctuations in the Phase Field Equations. 9. Special Cases of the Grand Potential Phase Field Model. 10. Application: Phase Field Modelling of Ternary Alloys. 11. Interpreting Asymptotic Analyses of Phase Field Models. 12. The Regime of Rapid Solidification. 13. Modelling Continuous Growth Kinetics in the Diffuse Interface Limit of the Grand Potential Phase Field Equations. 14. Applications: Phase Field Simulations of Rapid Solidificaation of a Binary Alloy

Erscheinungsdatum
Zusatzinfo 6 Line drawings, black and white; 5 Halftones, black and white; 11 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 800 g
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Maschinenbau
ISBN-10 0-367-76857-7 / 0367768577
ISBN-13 978-0-367-76857-7 / 9780367768577
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Siegfried Hunklinger; Christian Enss

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 125,90

von Rudolf Gross; Achim Marx

Buch | Hardcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 109,95
Festkörperphysik

von Gerhard Franz

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 125,90