Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning Acceleration for Tightly Energy-Constrained Devices - Renzo Andri

Machine Learning Acceleration for Tightly Energy-Constrained Devices

Buch
XVI, 232 Seiten
2020 | 2020
Hartung-Gorre (Verlag)
978-3-86628-693-1 (ISBN)
CHF 89,60 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Neural Networks have revolutionized the artificial intelligence and machine learning field in recent years, enabling human and even super-human performance on several challenging tasks in a plethora of different applications. Unfortunately, these networks have dozens of millions of parameters and need billions of complex floating-point operations, which does not fit the requirements of rising Internet-of-Things (IoT) end nodes. In this work, these challenges are tackled on three levels: Efficient design and implementation of embedded hardware, the design of existing low-power microcontrollers and their underlying instruction set architecture, and full-custom hardware accelerator design. Meanwhile, we are investigating novel algorithmic approaches of extreme quantization of neural networks, and analyze their performance and energy efficiency trade-off.
Erscheinungsdatum
Reihe/Serie Series in Microelectronics ; 240
Verlagsort Konstanz
Sprache englisch
Maße 148 x 210 mm
Gewicht 350 g
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Quantenphysik
Schlagworte full-custom hardware accelerator design • internet-of-things • low-power microcontrollers • machine learning • Tightly Energy-Constrained Devices
ISBN-10 3-86628-693-7 / 3866286937
ISBN-13 978-3-86628-693-1 / 9783866286931
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

Buch | Softcover (2022)
Wiley-VCH (Verlag)
CHF 76,85