Cancer Nanotechnology
Principles and Applications in Radiation Oncology
Seiten
2020
CRC Press (Verlag)
978-0-367-57656-1 (ISBN)
CRC Press (Verlag)
978-0-367-57656-1 (ISBN)
This comprehensive volume demonstrates how the unique physicochemical properties of nanoparticles lead to novel strategies for cancer treatment and detection. After an introduction to the first principles of radiation physics and radiation biology, the book discusses fabrication of nanoparticles, safety of nanoparticles, and the quantification o
Rapid advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes, sizes, and properties, and efforts are ongoing to exploit these materials for practical clinical applications. Nanotechnology is particularly relevant in the field of oncology, as the leaky and chaotic vasculature of tumors—a hallmark of unrestrained growth—results in the passive accumulation of nanoparticles within tumors.
Cancer Nanotechnology: Principles and Applications in Radiation Oncology is a compilation of research in the arena of nanoparticles and radiation oncology, which lies at the intersection of disciplines as diverse as clinical radiation oncology, radiation physics and biology, nanotechnology, materials science, and biomedical engineering. The book provides a comprehensive, cross-disciplinary survey of basic principles, research techniques, and outcomes with the goals of eventual clinical translation.
Coverage includes
A general introduction to fabrication, preferential tumor targeting, and imaging of nanoparticles
The specific applications of nanomaterials in the realms of radiation therapy, hyperthermia, thermal therapy, and normal tissue protection from radiation exposure
Outlooks for future research and clinical translation including regulatory issues for ultimate use of nanomaterials in humans
Reflecting profound advances in the application of nanotechnology to radiation oncology, this comprehensive volume demonstrates how the unique physicochemical properties of nanoparticles lead to novel strategies for cancer treatment and detection. Along with various computational and experimental techniques, each chapter highlights the most promising approaches to the use of nanoparticles for radiation response modulation.
Rapid advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes, sizes, and properties, and efforts are ongoing to exploit these materials for practical clinical applications. Nanotechnology is particularly relevant in the field of oncology, as the leaky and chaotic vasculature of tumors—a hallmark of unrestrained growth—results in the passive accumulation of nanoparticles within tumors.
Cancer Nanotechnology: Principles and Applications in Radiation Oncology is a compilation of research in the arena of nanoparticles and radiation oncology, which lies at the intersection of disciplines as diverse as clinical radiation oncology, radiation physics and biology, nanotechnology, materials science, and biomedical engineering. The book provides a comprehensive, cross-disciplinary survey of basic principles, research techniques, and outcomes with the goals of eventual clinical translation.
Coverage includes
A general introduction to fabrication, preferential tumor targeting, and imaging of nanoparticles
The specific applications of nanomaterials in the realms of radiation therapy, hyperthermia, thermal therapy, and normal tissue protection from radiation exposure
Outlooks for future research and clinical translation including regulatory issues for ultimate use of nanomaterials in humans
Reflecting profound advances in the application of nanotechnology to radiation oncology, this comprehensive volume demonstrates how the unique physicochemical properties of nanoparticles lead to novel strategies for cancer treatment and detection. Along with various computational and experimental techniques, each chapter highlights the most promising approaches to the use of nanoparticles for radiation response modulation.
Sang Hyun Cho, Sunil Krishnan
Basic Principles of Radiation Oncology and Radiosensitization. Synthesis, Safety, and Imaging of Nanomaterials for Cancer Applications. Nanomaterials for Radiation Therapy. Nanomaterials for Hyperthermia and Thermal Therapy. Future Outlook.
Erscheinungsdatum | 01.07.2020 |
---|---|
Reihe/Serie | Imaging in Medical Diagnosis and Therapy |
Verlagsort | London |
Sprache | englisch |
Maße | 210 x 280 mm |
Gewicht | 530 g |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete ► Onkologie |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Technik | |
ISBN-10 | 0-367-57656-2 / 0367576562 |
ISBN-13 | 978-0-367-57656-1 / 9780367576561 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Korrigierter Nachdruck 2020 mit allen Ergänzungen der UICC aus den …
Buch | Softcover (2020)
Wiley-VCH (Verlag)
CHF 59,95
Resilienz innovativ stärken : ein Praxishandbuch
Buch | Softcover (2023)
Kohlhammer (Verlag)
CHF 49,95