Statistical Analysis of Empirical Data (eBook)
XI, 277 Seiten
Springer International Publishing (Verlag)
978-3-030-43328-4 (ISBN)
Researchers and students who use empirical investigation in their work must go through the process of selecting statistical methods for analyses, and they are often challenged to justify these selections. This book is designed for readers with limited background in statistical methodology who seek guidance in defending their statistical decision-making in the worlds of research and practice. It is devoted to helping students and scholars find the information they need to select data analytic methods, and to speak knowledgeably about their statistical research processes. Each chapter opens with a conundrum relating to the selection of an analysis, or to explaining the nature of an analysis. Throughout the chapter, the analysis is described, along with some guidance in justifying the choices of that particular method.
Designed to offer statistical knowledge to the non-specialist, this volume can be used in courses on research methods, or for courses on statistical applications to biological, medical, life, social, or physical sciences. It will also be useful to academic and industrial researchers in engineering and in the physical sciences who will benefit from a stronger understanding of how to analyze empirical data. The book is written for those with foundational education in calculus. However, a brief review of fundamental concepts of probability and statistics, together with a primer on some concepts in elementary calculus and matrix algebra, is included. R code and sample datasets are provided.
Scott A. Pardo, Ph.D., is a professional statistician, having worked in a wide variety of industrial contexts, including the U.S. Army Information Systems Command, satellite systems engineering, pharmaceutical development, and medical devices. He is the author of Empirical Modeling and Data Analysis for Engineers and Applied Scientists (Springer 2016). He is a Six Sigma Master Black Belt, an Accredited Professional Statistician (PStat™), and holds a Ph.D. in Industrial and Systems Engineering from the University of Southern California.
Erscheint lt. Verlag | 4.5.2020 |
---|---|
Zusatzinfo | XI, 277 p. 150 illus., 10 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Naturwissenschaften | |
Schlagworte | ANOVA • Assumptions • confidence • inference • misconceptions • Modeling • Predictive Analysis • Statistical Methods • statistics for engineering • statistics for life sciences |
ISBN-10 | 3-030-43328-5 / 3030433285 |
ISBN-13 | 978-3-030-43328-4 / 9783030433284 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich