Nanostructured Metal Oxides and Devices (eBook)
XXXIV, 318 Seiten
Springer Singapore (Verlag)
978-981-15-3314-3 (ISBN)
This book primarily covers the fundamental science, synthesis, characterization, optoelectronic properties, and applications of metal oxide nanomaterials. It discusses the basic aspects of synthetic procedures and fabrication technologies, explains the related experimental techniques and also elaborates on the current status of nanostructured oxide materials and related devices. Two major aspects of metal oxide nanostructures - their optical and electrical properties - are described in detail. The first five chapters focus on the optical characteristics of semiconducting materials, especially metal oxides at the nanoscale. The following five chapters discuss the electrical properties observed in metal oxide-based semiconductors and the status quo of device-level developments in a variety of applications such as sensors, transistors, dilute magnetic semiconductors, and dielectric materials. The basic science and mechanism behind the optoelectronic phenomena are explained in detail, to aid readers interested in the structure-property symbiosis in semiconducting nanomaterials. In short, the book offers a valuable reference guide for researchers and academics in the areas of material science and semiconductor technology, especially nanophotonics and electronics.
Dr. M. K. Jayaraj is currently a Professor at the Department of Physics, Cochin University of Science and Technology (CUSAT), India. He earned his master's and Ph.D. from CUSAT, and completed his postdoctoral research at eminent institutions in India, Italy, France, Japan, and the USA. He is the founder director of the Centre of Excellence in Advanced materials, CUSAT. He is also the mentor of 'Delgado Coating & Technology Solutions Private Limited'. Dr. Jayaraj is a pioneer in the field of thin-film and nanocomposite devices, including sensors/detectors and energy converters, and transparent conductors for photovoltaics. He has more than 180 research publications, several edited books and book chapters, and patents to his credit. In addition, he was honored with the MRSI Medal 2019, conferred by the Materials Research Society of India.
This book primarily covers the fundamental science, synthesis, characterization, optoelectronic properties, and applications of metal oxide nanomaterials. It discusses the basic aspects of synthetic procedures and fabrication technologies, explains the related experimental techniques and also elaborates on the current status of nanostructured oxide materials and related devices. Two major aspects of metal oxide nanostructures - their optical and electrical properties - are described in detail. The first five chapters focus on the optical characteristics of semiconducting materials, especially metal oxides at the nanoscale. The following five chapters discuss the electrical properties observed in metal oxide-based semiconductors and the status quo of device-level developments in a variety of applications such as sensors, transistors, dilute magnetic semiconductors, and dielectric materials. The basic science and mechanism behind the optoelectronic phenomena are explained in detail, to aid readers interested in the structure-property symbiosis in semiconducting nanomaterials. In short, the book offers a valuable reference guide for researchers and academics in the areas of material science and semiconductor technology, especially nanophotonics and electronics.
Preface 7
Acknowledgements 9
Contents 10
Editor and Contributors 11
Abbreviations 13
List of Figures 19
List of Tables 31
1 Oxide Luminescent Materials 33
1 Introduction 33
2 Photoluminescence (PL) 34
2.1 Emission Kinetics 35
2.2 Intrinsic Luminescence 36
2.3 Extrinsic Luminescence 37
3 Sensitization 39
3.1 Emission Reabsorption 40
3.2 Resonance Radiationless Energy Transfer 40
3.3 Non-resonance Radiationless Energy Transfer 41
4 Concentration Quenching (Self-quenching) 41
5 Advantages of PL Technique 42
6 Luminescent Displays 43
7 Why TFEL? 43
8 The Phenomenon of Electroluminescence (EL) 46
8.1 EL Device Structure 46
8.2 Ideal ACTFEL Device 47
8.3 The Basic Mechanism 49
8.4 Space Charge in EL Devices 51
9 Material Requirements for ACTFEL Devices 52
10 Inorganic Luminescent Materials 55
10.1 Phosphor Materials 56
11 Oxide Phosphors 58
12 Review on Oxide Phosphor Hosts in ACTFEL Devices 59
12.1 Zinc Gallium Oxide—ZnGa2O4 60
12.2 Zinc Germanate—Zn2GeO4 65
12.3 Yttrium Oxide—Y2O3 66
13 White Phosphors 68
14 Summary of Work Done in Laboratory 68
References 71
2 Upconversion Nanophosphors: An Overview 79
1 Introduction 79
2 Mechanisms Involved in Upconversion Phosphors 82
2.1 Excited-State Absorption 83
2.2 Energy Transfer Upconversion 84
2.3 Cooperative Sensitization Upconversion 85
2.4 Cross-Relaxation 87
2.5 Photon Avalanche 88
2.6 Energy Migration Upconversion 89
3 The Category of the Upconversion Materials 90
3.1 Rare Earth Upconversion Phosphors 90
3.2 Transition Metal Upconverters 99
3.3 Mixed Rare Earth–Transition Metal Upconverters 100
4 Upconversion Efficiency 101
5 Synthesis Methods for Upconversion Phosphors 103
5.1 Hydrothermal/Solvothermal Method 103
5.2 Sol–gel Method 104
5.3 Co-precipitation Method 104
5.4 Thermal Decomposition Method 105
6 Application of Upconversion Phosphors 106
6.1 Solar Energy Harvesting 106
6.2 Biological Applications 116
6.3 Upconversion in Security Applications 122
7 Conclusions 124
References 125
3 Optical Properties of Metal, Semiconductor and Ceramic Nanostructures Grown by Liquid Phase-Pulsed Laser Ablation 135
1 Introduction 135
2 Metal Nanoparticles by LP-PLA Technique 140
3 Semiconducting Nanoparticles by LP-PLA 146
4 Ceramic Nanoparticles by LP-PLA Technique 152
5 Conclusions 156
References 156
4 Optical Properties of Quantum Well Structures 161
1 Introduction 161
2 Epitaxy 165
3 Band Gap Tuning of ZnO 166
4 ZnO-Based Symmetric and Asymmetric Multiple Quantum Well Structures 169
5 Conclusions 182
References 182
5 Metal Oxides-Based SERS Substrates 187
1 Introduction to Surface Enhanced Raman Scattering 187
2 Metal Nanostructures as SERS Substrates 189
3 Metal-Metal Oxide Hybrid Structures as SERS Substrates (SERS EM Enhancement Effect) 190
4 Metal Oxide as SERS-Active Substrates (SERS Chemical Enhancement Effect) 197
5 Applications of Metal Oxide-Based SERS Substrate 203
5.1 Investigation of Semiconductor/Adsorbate Interface 204
5.2 Realization of Biochemical Detection 204
6 Conclusions 205
References 206
6 One-Dimensional ZnO Nanostructure: Growth & Device Applications
1 Introduction 208
2 1D Nanostructure Growth Techniques 209
2.1 Chemical Vapour Deposition 210
2.2 Vapour–Liquid–Solid Growth 211
2.3 Solution Growth 211
2.4 Hydrothermal 212
2.5 Electrodeposition Growth 213
2.6 Pulsed Laser Deposition (PLD) 214
2.7 ZnO Nanotube Formation 214
2.8 Patterning Techniques 214
3 ZnO 1D Nanostructure-Based Devices 215
3.1 Heterojunction 216
3.2 Light-Emitting Diode (LED) 219
3.3 Photodetector 222
3.4 Solar Cells 229
3.5 Transistors 230
3.6 pH Sensor 230
3.7 Nanogenerators 232
3.8 Switching Memory Device 232
4 Conclusions 233
References 233
7 Metal Oxide Semiconductor Gas Sensors 242
1 Introduction 242
2 Metal Oxide Semiconductor Gas Sensors (MOS) 243
2.1 Gas Sensing Mechanisms of Metal Oxide Semiconductors 244
2.2 Importance of Sensing Layer Morphology on the Sensing Properties of Metal Oxide Semiconductor Gas Sensors 247
2.3 The Performance Parameters of MOS-Based Gas Sensors 248
2.4 Sensor Response Formula for Chemiresistive Gas Sensors 250
3 Metal Oxide Semiconductor-Based Heterostructures for Gas Sensing 252
3.1 Schottky Junction 253
3.2 p-n Junction 255
4 p-CuO/n-ZnO Heterojunction Sensor for Room-Temperature Gas Sensing Applications 256
5 Summary 258
References 259
8 Zno-Based Dilute Magnetic Semiconductors 264
1 Introduction 264
2 Magnetic Interactions in DMS 267
2.1 Carrier-Single Magnetic Interaction 267
2.2 Superexchange Interaction 267
2.3 Double-Exchange Interaction 268
2.4 RKKY (Ruderman–Kittel–Kasuya–Yoshida) Interaction 268
2.5 Impurity-Band Exchange and Bound Magnetic Polarons 269
3 Brief Report on TM-Doped Semiconductors 270
3.1 TiO2-Based DMS 270
3.2 SnO2 Materials 271
3.3 Importance of TM-Doped ZnO 271
4 Proposed Spintronic Devices 273
4.1 Overview of Spin-Based Devices and Its Applications 273
4.2 Co-Doped ZnO-Based Magnetic Tunnel Junctions 275
5 Theoretical and Experimental Hurdles in the Realization of RTFM in TMOs 276
5.1 Experimental Limitations in Magnetic Measurements 279
5.2 Effect of Growth Parameters 281
5.3 Growth and Characterization of PLD-Grown ZnO:TM Thin Films 285
5.4 Growth of ZnO:TM Nanostructures by Hydrothermal Technique 288
5.5 Origin of Ferromagnetism in ZnO-Based DMSs 292
6 Summary 293
References 295
9 Domain Matched Epitaxial Growth of Dielectric Thin Films 301
1 Introduction 301
2 Paraelectric Materials for Tunable Microwave Applications 303
3 Major Degradation Factors of Ferroelectric Materials 304
4 Advantage of Combining Semiconductor with Ferroelectric Material 305
5 Methods for Improving Tunability and Dissipation Factor 306
5.1 Acceptor Doping 307
5.2 Metal Doping or Metal Compositing 308
5.3 Epitaxial Growth of Thin Films 309
6 Domain Matched Epitaxial Growth of Barium Strontium Titanate (Ba1?xSrxTiO3) 313
7 Conclusion 324
References 325
10 Metal-Oxide Transistors and Calculation of the Trap Density of States in the Band Gap of Semiconductors 333
1 Introduction 333
2 Development of Oxide TFTs 334
3 Device Structure 335
4 Calculation of the Trap Density of States in the Band Gap of Semiconductors 336
4.1 Crystalline Semiconductors 336
4.2 Amorphous Semiconductors 337
4.3 Analytical Description of an Ideal Thin-Film Transistor 338
5 Density of States Calculation of n-Type Amorphous Zinc Tin Oxide TFT 342
6 Density of States Calculation of Organic Thin-Film Transistor 345
6.1 Density of States Calculation of n-Type PTCDI-C8 Thin-Film Transistor 345
References 346
Erscheint lt. Verlag | 16.4.2020 |
---|---|
Reihe/Serie | Materials Horizons: From Nature to Nanomaterials | Materials Horizons: From Nature to Nanomaterials |
Zusatzinfo | XXXIV, 318 p. 168 illus., 126 illus. in color. |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Optik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Fabrication techniques • Luminescence • Metal Oxides • nanomaterials • Nanophotonics • optoelectronics • semiconductors • sensors • Surface Enhanced Raman Substrates |
ISBN-10 | 981-15-3314-8 / 9811533148 |
ISBN-13 | 978-981-15-3314-3 / 9789811533143 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich