Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Racing for the Surface (eBook)

Pathogenesis of Implant Infection and Advanced Antimicrobial Strategies
eBook Download: PDF
2020 | 1st ed. 2020
XI, 650 Seiten
Springer International Publishing (Verlag)
978-3-030-34475-7 (ISBN)

Lese- und Medienproben

Racing for the Surface -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the latest research in biofilm, infection, and antimicrobial strategies in reducing and treating musculoskeletal, skin, transfusion, implant-related infections, etc. Topics covered include biofilms, small colony variants, antimicrobial biomaterials (antibiotics, antimicrobial peptides, hydrogels, bioinspired interfaces, immunotherapeutic approaches, and more), antimicrobial coatings, engineering and 3D printing, antimicrobial delivery vehicles, and perspectives on clinical impacts. Antibiotic resistance, which shifts the race toward bacteria, and strategies to reduce antibiotic resistance, are also briefly touched on. Combined with its companion volume, Racing for the Surface: Pathogenesis of Implant Infection and Advanced Antimicrobial Strategies, this book bridges the gaps between infection and tissue engineering, and is an ideal book for academic researchers, clinicians, industrial engineers and scientists, governmental representatives in national laboratories, and advanced undergraduate students and post-doctoral fellows who are interested in infection, microbiology, and biomaterials and devices.



Bingyun Li is a full Professor with tenure at School of Medicine, West Virginia University. He is a Fellow of the American Institute for Medical and Biological Engineering and an Associate Editor of the Frontiers in Microbiology journal. Professor Li is a member of the Society for Biomaterials (SFB), Orthopedic Research Society (ORS), American Society for Microbiology (ASM), Materials Research Society (MRS), American Chemical Society (ACS), International Chinese Musculoskeletal Research Society (ICMRS), and Chinese Association for Biomaterials (CAB). Professor Li has served as topic chair of Infection and Inflammation of the ORS Program Committee, vice-chair and chair of Orthopedic Biomaterials Special Interest Group of SFB, Chief Editor of ICMRS Newsletter, and inaugural treasurer of CAB. Professor Li's research focuses on advanced materials, nanomedicine, infection, immunology, and drug delivery. He has published two edited books, 102 articles, 133 abstracts, and 14 provisional/full patents. Professor Li has given 56 invited and keynote talks and has received multiple prestigious awards including the Berton Rahn Prize from AO Foundation, the Pfizer Best Scientific Paper Award from Asia Pacific Orthopedic Association, and the Collaborative Exchange Award from Orthopedic Research Society.

Thomas Webster is the Chemical Engineering Department Char and Art Zafiropoulo Endowed Chair at Northeastern University. Prof. Webster has graduated 144 students. His lab group published 9 textbooks, 48 book chapters, 403 articles, and 32 provisional/full patents. Prof. Webster has received numerous honors: 2012, Fellow, American Institute for Medical and Biological Engineering; 2013, Fellow, Biomedical Engineering Society; 2015, Wenzhou 580 Award; 2015, Zheijang 1000 Talent Program; 2016, IMRC Chinese Academy of Science Lee-Hsun Lecture Award; 2016, Fellow, Biomaterials Science and Engineering; and 2016, Acta Biomaterialia Silver Award. He also frequently appears on the BBC, NBC, ABC, Fox, National Geographic, Discovery Channel and many other news outlets talking about science.

Malcolm Xing is a professor of University of Manitoba. His research focuses on smart biomaterials for tissue engineering, nanomedicine, wearable biosensor, implantable bio-robot and 3D/4D bioprinting. He has obtained awards such as National Science & Engineering Research Council Discovery Accelerator Supplement Award, Canada Foundation for Innovation - Innovation Fund, CBA-BA Young Investigator Award in ACS 2017 and Dr. J.A. Moorhouse Fellowship of the Diabetes Foundation of Manitoba.  Dr. Xing was the invited speaker of 2019 Society for Biomaterials Annual Conference and Keynote speaker of 2019 Canada Biomaterials Society (CBS) Conference, and the conference chair of CBS2017. His research has been covered in media including Time, Fortune, Discovery, Science, ACS headline news, RSC, CTV, CBC, etc.

Foreword 5
Preface 7
Medical Device Infections: Is Anyone Paying Attention? 7
Contents 9
Part I: Clinical Significance of Infection 12
When the Race Is Lost: The Clinical Impact of Prosthetic Joint Infections 13
Epidemiology/Incidence 13
Overview of Challenges 14
Host Risk Factors 17
Body Mass Index (BMI) 18
Diabetes 18
Lifestyle Factors 18
Modifiable Medical Risk Factors 18
Nonmodifiable Risk Factors 19
Diagnosis 19
Clinical Presentation 19
Imaging 23
Criteria 24
Joint Aspiration 25
Culture 25
Treatment 26
Suppressive Antibiotic Therapy (SAT) 27
Surgery 27
Debridement and Irrigation with Implant Retention (DAIR) 27
Exchange Arthroplasty 28
Single-Stage Exchange 28
Two-Stage Exchange 28
Resection Arthroplasty 29
Knee Arthrodesis and Above the Knee Amputation 31
Girdlestone and Hip Disarticulation 31
Adjunctive Antibiotic Therapy 31
Negative Pressure Wound Therapy (NPWT) 34
Call to Action 34
References 35
Complications in Orthopedic Trauma Surgery: Fracture-Related Infection 42
Fracture-Related Infection 43
Definition 43
Etiology 45
Biofilm Formation 46
Incidence and Prevention 46
The Role of Local Antibiotic Administration in the Prevention of FRI 48
Diagnosis 49
Clinical Signs 49
Radiological Signs 50
Laboratory Findings 51
Microbiological Findings 52
Treatment 52
Dead Space Management 54
Emerging Strategies Against FRI 58
Prevention 58
Diagnosis 59
Treatment 59
Conclusion 60
References 60
Periprosthetic Joint Infection 66
Introduction 67
Pathophysiology of PJI 67
Classification and Clinical Presentation of Infection 69
Etiology of Periprosthetic Joint Infection 70
Diagnosis of Periprosthetic Joint Infection 71
Prevention of Periprosthetic Joint Infection 72
General Concepts in the Treatment of Periprosthetic Joint Infection 73
Acute Infection 73
Chronic Infection 74
Emerging Strategies to Prevent and Treat PJI 78
Conclusion 79
References 79
Perspectives on Biomaterial-Associated Infection: Pathogenesis and Current Clinical Demands 84
Introduction 84
Pathogenesis of Biomaterial-Associated Infection 87
Diagnosis and Treatment of Biomaterial-Associated Infections 89
Causative Pathogens of Biomaterial-Associated Infections 91
Biomaterial-Associated Infection-Related Drug Resistance 91
Clinical Demands: Desirable Properties of Infection-Reducing Biomaterials 92
Summary and Outlook 99
References 100
Perspectives on and Need to Develop New Infection Control Strategies 103
Introduction: Historical Perspective and Outlook 104
New Strategies for Infection Control: A Likelihood Perspective 106
Antibiotics 106
Probiotics 108
Phage Therapy 109
Antimicrobial Peptides 109
Nanotechnology-Based Strategies 110
Conclusion 110
References 111
Part II: Pathogenesis of Infection 114
Pathogenesis of Biomaterial-Associated Infection 115
Introduction 115
Etiology 116
Pathogenesis 116
Routes of Infection 117
Biofilms 118
Biofilm Development 120
Bacterial Motion 121
Adhesion 124
Surface Sensing and Strengthening the Initial Attachment 125
Reversible and Irreversible Attachment 128
Race to the Surface 129
Biofilm Formation 129
The Biofilm Matrix 130
Maturation 133
Quorum Sensing 133
Dispersal 134
Tolerance Mechanisms 137
Impaired Penetration 137
Altered Microenvironment 139
Stress Response 141
Persister Formation 142
Immune Evasion 143
Innate Immunity 143
Adaptive Immunity 145
Host Cell Invasion 145
Conclusion 147
References 149
Device-Related Infections 176
Introduction 176
Implant Surface Conditioning 178
Bacterial Adhesion to Surfaces 178
Biofilm Formation 179
Quorum Sensing and Biofilm Regulation 180
The EPS Matrix 181
Biofilm Resistance 182
Diagnosis of Biofilm Infections on Medical Devices 183
Treatment of Biofilm Infections on Medical Devices 186
Conclusion and Summary 188
References 188
Insights into the Emergence, Clinical Prevalence, and Significance of Staphylococcus aureus Small Colony Variants 194
Introduction 194
What Are S. aureus SCVs and Their Characteristics? 195
Screening and Identification of S. aureus SCVs from Clinical Patient Samples 198
Emergence and Prevalence of Clinical Cases of  S. aureus SCVs 199
Osteomyelitis 202
Implant/Device-Related Infection 204
Cystic Fibrosis (CF) 204
Abscess 205
Skin Infection 208
Clinical Significance of S. aureus SCVs 208
Summary and Perspectives 210
References 213
The Impact of Bacterial Biofilms in Transfusion Medicine 217
Introduction 218
Bacterial Biofilm Formation During Storage of Platelet Concentrates 220
Bacterial Adhesion to PC Storage Containers 221
Bacteria–Platelet Interaction During PC Storage 221
Biofilm Resistance to Immune Clearance During PC Storage 222
Safety Implications for Transfusion Patients 223
Future Approaches 223
Concluding Remarks 224
References 224
Part III: Advanced Antimicrobial Strategies to Treat Infection 227
Antimicrobial Materials in Arthroplasty 228
Introduction 229
Current Methods of PJI Prevention 229
Biofilm and Limitations of Systemic Preventative Strategies 230
Focus on Local Control 230
Antibiotic Bone Cement 231
Antibiotic Powder 232
Antiseptic Irrigation 233
Modified Implants 234
Antimicrobial Implant Surfaces 234
Hydrogels 235
Chitosan 236
Metal Ion Coating 237
Silver Clinical Use-Case Series 238
Non-metal Element Coating 239
Synthetic Peptide Coatings 240
Barriers to Development/Implementation 240
Conclusion/Summary 241
References 242
Antimicrobial Endodontic Materials 249
Introduction 250
Antimicrobial Irrigants and Irrigation Techniques 251
Antimicrobial Irrigants 251
Irrigation Techniques 254
Antimicrobial Drugs for Root Canal Medication 256
Antimicrobial Endodontic Sealers 257
Conclusions 260
References 260
Advances in Polysaccharide-Based Antimicrobial Delivery Vehicles 269
Introduction 269
Overview of Polysaccharides as Biological Macromolecules 271
Polysaccharides as Drug Delivery Vehicles 273
Polysaccharides as Antimicrobial Agents 274
Polysaccharide-Based Antimicrobial Delivery Vehicles 275
Chitosan 277
Chitosan Nanoparticles 277
Chitosan Microparticles 278
Chitosan Coatings 278
Chitosan Films 279
Chitosan Sponges 279
Chitosan Hydrogels 280
Alginate 280
Alginate Sponges/Hydrogels 281
Alginate Nanofibers 281
Alginate Micro/Nanoparticles 282
Alginate Beads 283
Alginate Composite Gel System 283
Carrageenan 284
Pectin 284
Dextran 285
Guar gum 287
Hyaluronic Acid (HA) 287
Cellulose 288
Conclusion 289
References 289
Mechanisms of Action and Chemical Origins of Biologically Active Antimicrobial Polymers 298
Introduction 299
Overview of Different Types of Antimicrobial Polymers 300
Chitosan-Based Polymers 301
Polymers Containing Quaternized Ammonium 303
Synthetic Protein Mimics 305
Polyethylenimines 306
Halamines 307
Cytotoxicity of Polymers 308
Future Directions 309
Conclusion 311
References 311
Engineering Approaches to Create Antibacterial Surfaces on Biomedical Implants and Devices 314
Introduction 315
Engineering Strategies to Create Antibacterial Surfaces on Biomedical Implants and Devices 316
Surface Coatings Using Functionalized Polymers 317
Antifouling Polymer Coatings to Prevent Bacterial Adhesion 317
Bactericidal Activity of Functionalized Polymer Coatings 319
Surface Modification with Antimicrobial Nanoparticles and/or Inorganic–Organic Hybrids 320
Antibacterial Nanoparticles 320
Inorganic–Organic Hybrids 321
Biomimicry Toward Advanced Antimicrobial Surfaces 323
Natural, Antifouling Surfaces with Reduced Bacterial Adhesion 323
Natural, Bactericidal Surfaces to Induce Membrane Rupture of Bacterial Cell 325
Nature-Inspired, Nanostructured Surface Development for Antibacterial Properties 327
Engineered Surfaces with Surface Roughness or Pattern at the Nano and Micro Scale 327
Biomimetic Surfaces with Nanoprotrusion 328
Antifouling Nanoporous Surface Formation 331
Prospective Approaches 331
Summary 333
References 334
Antibacterial Coatings on Medical Implants 342
Introduction 342
Biofilm Formation on Implants 343
Antibacterial Mechanism 344
Coating Methods 345
Spray Coating 345
Ultrasonic Spray Nozzle 345
Aerosol 346
Thermal Spray 346
High-Velocity Oxygen Fuel Coatings 346
Pulsed Laser Deposition 347
Chemical Vapor Deposition 347
Sputter Coating 348
Inkjet Printing 348
Layer-by-Layer Coating 349
Metallic Nano-Coatings 349
Ceramic Coatings 350
Hydroxyapatite Coatings 350
Zinc Oxide Coating 350
Polymer Coatings 351
Collagen Coatings 353
PLA-Based Coatings 354
Heparin Coatings 354
Conclusion and Perspectives 354
References 355
Metal- and Polymer-Based Nanoparticles for Advanced Therapeutic and Diagnostic System Applications 358
Introduction to Nanotechnology 359
Types of Nanomaterials 359
Applying Nanotechnology to Resist Infectious Diseases 360
Noble Metal and Metal Oxide Nanoparticles as Antibacterial Agents 361
Metal Nanoparticle-Induced Pathogenic Toxicity: Mechanisms and Actions 361
Strategies for Modifying and Encapsulating Nanoparticles for Disease Applications 365
Doping, Capping, and Halogenating 365
Polymeric Nanomaterials and their Usefulness as Drug or Particle Carriers 369
Disease Detection Through the Application of Imaging Methods and Nanoparticles 373
Future Perspectives in Nanoparticle Research 377
Conclusions 378
References 379
Battling Bacteria with Free and Surface-Immobilized Polymeric Nanostructures 386
Introduction 387
Amphiphilic Block Copolymers: The Essential Building Blocks 388
Self-Assembly of Polymeric Nano-Architectures 391
Polymersomes as Nanocarriers for Antimicrobial Applications 393
Polymersomes with Intrinsic Antimicrobial Features 393
Polymersomes as Nanocompartments for Antimicrobial Drugs and Their Production 394
Polymersomes Loaded with NPs 398
Polymersomes for Sensing Pathogenic Bacteria 399
Immobilized Nanocompartments 400
Immobilization Techniques 400
Active Surfaces 401
Conclusion and Perspectives 404
References 405
Polymeric Nanoparticulate Delivery Vehicles of Antimicrobials for Biofilm Eradication 410
Introduction 410
Polymer-Based Antimicrobial Delivery for Biofilm Elimination 412
NPs Consist of Polymers Exhibiting Antimicrobial Activities 412
Nanosized Polymeric Carriers for Antimicrobial Delivery 414
Polymer–Lipid Hybrid Micellar Nanocarriers for Antibiotic Delivery to Bacterial Biofilms 417
Polymeric Nanogel/Hydrogel for Antimicrobial Delivery to Biofilms 421
Polymersome/Liposome Nanocarriers for Antimicrobial Delivery to Biofilm 422
Electrospun Nanofiber to Deliver Antimicrobials 424
Conclusions and Future Perspective 426
References 427
Chiral Stereochemical Strategy for Antimicrobial Adhesion 431
Introduction 431
Chiral Stereochemical Strategy 432
Chiral Effect on Cells 433
Chiral Effect on Biomacromolecules 437
Antimicrobial Adhesion 439
Synthetic Polymers 439
Natural Polymers 444
Inorganic Carbon Materials 449
Conclusions and Perspectives 449
References 451
Bioinspired Interfaces for the Management of Skin Infections 457
Introduction 458
Skin Lesions Associated with Biomaterials in Contact with the Skin 461
Medical Adhesives and Surgical Sutures 461
Wound Dressing Materials 463
Bioinspired Physical Barriers 464
High Aspect Ratio Bactericidal Nanostructures 464
Biofilm Control via Surface Micro- and Nanotexture 470
Future Perspectives 472
References 473
Local Delivery of Anti-biofilm Therapeutics 477
Introduction 477
Peptides and Amino Acids 478
Fatty Acids and Lipids 481
Enzymes 483
Glycoside Hydrolases 484
Protease 485
Nucleases 486
Dispersin B 486
Lysostaphin 487
Nitric Oxide 489
Metabolites 490
Nanoparticles 493
Delivery of Living Cells 495
Conclusions 498
References 500
Antimicrobial Hydrogels: Key Considerations and Engineering Strategies for Biomedical Applications 511
Introduction 512
Overview of Hydrogels 513
Engineering Antimicrobial Hydrogels 515
Inherently Antimicrobial Hydrogels 515
Natural Polymers 515
Synthetic Polymers 516
Peptide-Based Hydrogels 516
Amphoteric Ion Hydrogels 518
Composite Antimicrobial Hydrogels 518
Hydrogels Containing Immobilized Antimicrobial Agents 518
Incorporation of Antimicrobial Polysaccharides to Existing Hydrogels 519
Peptide-Hybridized Hydrogels 519
Incorporation of Antifouling Agents 520
Hydrogels as a Delivery Vehicle for the Controlled Release of Antimicrobial Agents 520
Nanoparticle-Mediated Antimicrobial Release 521
Enzyme/Nanozyme-Mediated Antimicrobial Release 521
Modifying Hydrogel Properties to Control Antimicrobial Release 522
Bacteria-Responsive Antimicrobial Release 523
Potential Biomedical Applications of Antimicrobial Hydrogels 524
Antimicrobial Hydrogels for Biomedical Devices 525
Implants 526
Catheters 527
Contact Lenses 528
Antimicrobial Hydrogels for Wound Healing and Tissue Regeneration 529
Wound Healing 529
Antibiotic-Loaded Antimicrobial Hydrogels 529
Hydrogels Containing Metal-Based NPs 530
Hydrogels Made of Natural Antimicrobial Polymers 531
Bone and Cartilage Tissue Regeneration 532
Conclusion and Perspectives 532
References 533
Antibacterial Polymeric and Peptide Gels/Hydrogels to Prevent Biomaterial-Related Infections 543
Introduction 545
Biomaterial-Related Infections 546
Challenges in Treating Infection 546
Current Antibacterial Approaches 547
Antibiotics 548
Antiseptics 548
Antiadhesives 549
Metal Ions and Nanoparticles 550
Carbon Nanotubes 552
Graphene and Graphene Oxide 554
Antimicrobial Peptides (AMPs) 554
Physical Immobilization of AMPs 556
Chemical Immobilization of AMPs 556
Antimicrobial Polymers 557
Gels and Hydrogels for Biomaterial-Related Infections 558
Polymeric Hydrogels 559
Polymeric Hydrogels Containing Antibiotics 559
Polymeric Hydrogels Containing Metal Nanoparticles 561
Polymeric Hydrogels Containing Antimicrobials 564
Natural Antibacterial Polymeric Hydrogels 565
Synthetic Antibacterial Polymeric Hydrogels 567
Self-Assembled Peptide Gels/Hydrogels 568
Conclusions 574
References 574
Antibacterial Hydroxyapatite: An Effective Approach to Cure Infections in Orthopedics 582
Introduction 583
Transition Metals as Antibacterial Agents 584
Metal Doping in HA 585
Transition Metal-Doped Antibacterial HA 587
Processing Techniques for Developing Metal-Doped HA 591
Transition Metal-Doped Antibacterial HA Coatings 593
High Temperature Coating Processes (Plasma and Thermal Spraying) 594
Cold Spraying Process 596
Sol–Gel Coating Process 596
Sputtering Coating Process 597
Electrochemical Coating Processes 598
Microwave Irradiation Coating Process 601
Recent Progresses in Metal-Doped Antibacterial HA 602
References 605
3D Printed Ceramic-Polymer Composites for Treating Bone Infection 612
The Need for Customized and Personalized Treatments 613
An Overview of Three-Dimensional (3D) Printing 613
Antimicrobial Materials 614
Clay Nanoparticles 614
Nanoclays 615
Halloysite 615
Laponite 616
Montmorillonite 616
Metal Nanoparticles 616
Applications in Dental and Orthopedic Surgery 618
Antimicrobial Coatings 618
Antimicrobial Coatings that Prevent Microbial Adhesion 619
Antimicrobial Coatings That Kill Bacteria 619
Antimicrobial Coatings That Promote Bone Healing 620
Antimicrobial Coatings with Multiple Roles 622
Osteoconductive and Osteoinductive Biomaterials 622
Therapeutic Strategies and Delivery Vehicles for Osteoconductive and Osteoinductive Agents 623
Bioactive Glass 623
Metal Nanoparticles 624
3D Printed Antimicrobial Medical Devices 624
3D Printed Antimicrobial Medical Devices Using Bioplastics 624
3D Printed Antimicrobial Calcium Phosphate Scaffolds 625
Adding Antimicrobial Functionalities to 3D Printed Medical Devices 626
What Does the Future Hold? 627
References 628
Index 635

Erscheint lt. Verlag 2.3.2020
Zusatzinfo XI, 650 p. 158 illus., 122 illus. in color.
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik Maschinenbau
Schlagworte Antimicrobial • Biomaterial • infection biomaterials • orthopedic biomaterial • osteoinductive • Osteointegration • pathogenesis • Tissue engineering • tissue regeneration • wound healing biomaterials
ISBN-10 3-030-34475-4 / 3030344754
ISBN-13 978-3-030-34475-7 / 9783030344757
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 22,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Molekularbiologie und Zellbiologie

von Philip L.R. Bonner; Alan J. Hargreaves

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 34,15
Molekularbiologie und Zellbiologie

von Philip L.R. Bonner; Alan J. Hargreaves

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 34,15