Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Introducing Machine Learning (eBook)

eBook Download: PDF
2020
400 Seiten
Pearson Education (Verlag)
978-0-13-558835-2 (ISBN)
Systemvoraussetzungen
30,92 inkl. MwSt
(CHF 29,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft's powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. * 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you * Explore what's known about how humans learn and how intelligent software is built * Discover which problems machine learning can address * Understand the machine learning pipeline: the steps leading to a deliverable model * Use AutoML to automatically select the best pipeline for any problem and dataset * Master ML.NET, implement its pipeline, and apply its tasks and algorithms * Explore the mathematical foundations of machine learning * Make predictions, improve decision-making, and apply probabilistic methods * Group data via classification and clustering * Learn the fundamentals of deep learning, including neural network design * Leverage AI cloud services to build better real-world solutions faster About This Book * For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills * Includes examples of machine learning coding scenarios built using the ML.NET library
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Expert-backed advice for information system design, down to .NET and …

von Jean-Philippe Gouigoux

eBook Download (2024)
Packt Publishing (Verlag)
CHF 37,50
Build practical projects with Blazor, .NET MAUI, gRPC, GraphQL, and …

von Mark J. Price

eBook Download (2023)
Packt Publishing (Verlag)
CHF 35,15