Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems (eBook)

(Autor)

eBook Download: PDF

145 Seiten
American Mathematical Society (Verlag)
978-1-4704-0373-7 (ISBN)
Systemvoraussetzungen
100,37 inkl. MwSt
(CHF 97,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In this text we take up the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. We first conduct a geometric study, which for a large part is not restricted to the perturbative situation of near-integrable systems. This point of view allows us to clarify some previously obscure points, in particular the symmetry and variance properties of the splitting matrix (indeed its very definition(s)) and more generally the connection with symplectic geometry. Using symplectic normal forms, we then derive local exponential upper bounds for the splitting matrix in the perturbative analytic case, under fairly general circumstances covering in particular resonances of any multiplicity. The next technical input is the introduction of a canonically invariant scheme for the computation of the splitting matrix. It is based on the familiar Hamilton-Jacobi picture and thus again is symplectically invariant from the outset. It is applied here to a standard Hamiltonian exhibiting many of the important features of the problem and allows us to explore in a unified way the question of finding lower bounds for the splitting matrix, in particular that of justifying a first order computation (the so-called Poincare-Melnikov approximation). Although we do not specifically address the issue in this paper we mention that the problem of the splitting of the invariant manifold is well-known to be connected with the existence of a global instability in these multidimensional Hamiltonian systems and we hope the present study will ultimately help shed light on this important connection first noted and explored by V. I. Arnold.
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich