Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Shape Memory Polymers, Blends and Composites -

Shape Memory Polymers, Blends and Composites (eBook)

Advances and Applications
eBook Download: PDF
2019 | 1st ed. 2020
X, 329 Seiten
Springer Singapore (Verlag)
978-981-13-8574-2 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry. 



Dr. Jyotishkumar Parameswaranpillai is a Professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut's University of Technology North Bangkok. He received his Ph.D. in polymer science and technology from Mahatma Gandhi University, Kerala, India. He is a former INSPIRE Faculty at the Department of Polymer Science and Rubber Technology of Cochin University of Science and Technology (India) from 2012 to 2017. He has authored around 100 papers and book chapters in reputed international journals on polymer nanocomposites, polymer blends and alloys, and biopolymers, and has edited four books. Dr. Jyotishkumar received the prestigious Kerala State Young Scientist Award in 2016 for his outstanding contributions to the field.

Prof. Dr.-Ing. habil. Suchart Siengchin is a Professor and the President of King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand. He received his Dipl.-Ing. in Mechanical Engineering from University of Applied Sciences Giessen/Friedberg, Hessen, Germany in 1999, M.Sc. in Polymer Technology from University of Applied Sciences Aalen, Baden-Wuerttemberg, Germany in 2002, M.Sc. in Material Science at the Erlangen-Nürnberg University, Bayern, Germany in 2004, Doctor of Philosophy in Engineering (Dr.-Ing.) from Institute for Composite Materials, University of Kaiserslautern, Rheinland-Pfalz, Germany in 2008 and Postdoctoral Research from Kaiserslautern University and School of Materials Engineering, Purdue University, USA.  In 2016 he received the habilitation at the Chemnitz University in Sachen, Germany. He worked as a Lecturer for Production and Material Engineering Department at the Sirindhorn International Thai-German Graduate School of Engineering (TGGS), KMUTNB. His research interests are in polymer processing and composite materials, and he has won the Outstanding Researcher Award in 2010, 2012 and 2013 at KMUTNB. He serves as the Editor-in-Chief  of KMUTNB International Journal of Applied Science and Technology and has authored 100 peer reviewed journal articles. He has participated with presentations in more than 39 International and National Conferences with respect to Materials Science and Engineering topics. 

Dr. Jinu Jacob George received his PhD degree from the Indian Institute of Technology Kharagpur, India in 2009. He completed his B.Tech. from M G University, Kottayam and M.Tech. from Cochin University of Science and Technology, Kochi, India. After pursuing PhD he moved to Leibniz Institute for Polymer Research (IPF), Dresden, Germany for his Post Doctoral Research. In 2011 he joined the Rubber Research Institute of India, Kottayam, as a Scientist. In 2015 he joined the Department of Polymer Science and Rubber Technology, CUSAT as a faculty member. At present, he is actively involved in research in the various advance fields of Polymer Science and Rubber Technology. He has a general research interest in the fields of Polymer micro/nano composites, Thermoplastic elastomers, Functional additives, and Shape memory polymers

Dr. Seno Jose, a native of Kerala, India, is an assistant Professor of Chemistry at Government College Kottayam. He did his masters in Chemistry in Mahatma Gandhi University. He has availed DST/DAAD fellowship and worked as a visiting researcher at Institute for Composite Materials Ltd., Germany. He received his Ph D in Chemistry from Mahatma Gandhi University in 2007. He has co-authored over 30 peer-reviewed publications. His research interests include polymer blends, polymer nanocomposites and shape memory polymeric materials.


This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry. 

Preface 6
Contents 8
About the Editors 10
Introduction to Shape-Memory Polymers, Polymer Blends and Composites: State of the Art, Opportunities, New Challenges and Future Outlook 12
1 Introduction 13
2 A Brief History of Shape-Memory Materials 13
3 The Shape-Memory Cycle 14
4 Molecular Mechanism of Shape-Memory Effect 14
5 Classification of Shape-Memory Polymers 17
6 Shape-Memory Trigger Methods Other Than Heating 17
7 Characterization of Shape-Memory Polymers 19
8 Applications of Shape-Memory Polymers 19
References 22
Classification of Shape-Memory Polymers, Polymer Blends, and Composites 31
1 Introduction 31
2 Classification of SMPs 33
2.1 Classification by Polymer Structure 34
2.2 Classification of Shape-Memory Function 42
2.3 Classification of Shape-Memory Polymers by Type of Stimulus 47
3 Main Applications of SMP 53
4 Conclusion 54
References 56
Novel Techniques for the Preparation of Shape-Memory Polymers, Polymer Blends and Composites at Micro and Nanoscales 63
1 Introduction of Shape-Memory Polymers 63
2 Strategies for the Preparation of Shape-Memory Polymers 66
2.1 Chemical Cross-linking of Thermoplastic Polymers 66
2.2 Single-Step Polymerization of Monomers/Prepolymers and Cross-linkers 66
2.3 One-Step Synthesis of Phase-Segregated Block Copolymers 68
3 Shape-Memory Polymer Blends 69
3.1 Direct Blending of Different Polymers 69
3.2 Addition of a Third Component into Binary Polymer Blends 72
3.3 Novel Processing Methods to Prepare Shape-Memory Polymer Blends 74
3.4 A Thermal Stimuli-Actuated Shape-Memory Polymer Blends 76
4 Shape-Memory Polymer Composites 80
4.1 Reinforcement Effect of Shape-Memory Polymer Composites 81
4.2 Electro-actuated Shape-Memory Polymer Composites 83
4.3 Magnetic-Actuated Shape-Memory Polymer Composites 84
4.4 Light-Actuated Shape-Memory Polymer Composites 84
4.5 Solvent-Actuated Shape-Memory Polymer Composites 86
4.6 Novel Shape-Memory Effect and Functional Applications 87
5 Conclusions and Outlook 88
References 90
Rheology of Shape-Memory Polymers, Polymer Blends, and Composites 94
1 Introduction 94
2 Rheology of Shape-Memory Polymers 95
3 Rheology of Polymer Blends and Composites 97
4 Conclusion 100
References 100
Microscopy of Shape Memory Polymers, Polymer Blends, and Composites 104
1 Introduction 104
2 Optical Microscopy (OM) 105
3 Polarized Light Optical Microscopy (POM) 106
3.1 Domains in SMP Structure 106
3.2 SME of Polymeric System with Small Scales 107
4 Scanning Electron Microscopy (SEM) 107
4.1 Microscale Shape Memory Behaviors 109
4.2 Microscale Surface Modification and Surface Pattern 109
4.3 Free Spaces/Microporous Structure 110
4.4 Fillers in SMPC 111
5 Transmission Electron Microscopy (TEM) 116
6 Atomic Force Microscopy (AFM) 119
6.1 Morphology and Nanofiller Characterization 119
6.2 Adhesive Force 120
6.3 Nanoscale Indentation 120
6.4 SME of Micro/Nanoscale Materials (Micro/Nanowires) 122
7 Infrared Microscopy 122
8 Fluorescence Microscopy 123
8.1 Dynamic Memory Process—Molecular/Bond Switch 124
8.2 Biomaterial System 125
9 Laser Scanning Confocal Microscopy (LSCM) 127
9.1 SMP Foam Structure 127
9.2 SMP Foam as Carrier for Cell 128
9.3 SMP Substrates for Cell Activity 129
9.4 SMP Particles as Carrier for Drug 131
10 Conclusions and Outlook 131
References 132
Dynamical Mechanical Thermal Analysis of Shape-Memory Polymers 137
1 Introduction 137
2 Materials 139
2.1 tBA/PEGDMA 139
2.2 SMP Filament 139
2.3 Vitrimer 140
3 Dynamical Mechanical Thermal Analysis 140
3.1 tBA/PEGDMA 140
3.2 SMP Filament 140
3.3 Vitrimer 140
4 Models for Linear Viscoelasticity 141
4.1 Standard Rheological Models 142
4.2 Time–Temperature Superposition 145
4.3 Identification of the Parameters of the Generalized Maxwell Models 146
5 Results 148
5.1 tBA/PEGDMA 148
5.2 SMP Filament 150
5.3 Vitrimer 151
6 Conclusion 152
References 157
Differential Scanning Thermal Analysis of Shape-Memory Polymers, Polymer Blends and Composites 160
1 Differential Thermal Analysis of Shape-Memory Polymers 160
2 Blends 167
3 Composites 171
4 Conclusion 171
References 172
Thermal Stability of Shape Memory Polymers, Polymer Blends, and Composites 174
1 Introduction 174
2 SMPs and SMPBs and Their Thermal Characteristics 177
2.1 A Brief Overview of SMPs and SMPBs 177
2.2 Benzoxazine-Based Shape Memory Polymers/Blends 178
3 Shape Memory Polymer Composites and Their Thermal Characteristics 193
3.1 A Brief Overview of SMPCs 193
3.2 Epoxy-Based SMPCs 194
4 Conclusions 198
References 199
Mechanical Properties of Shape-Memory Polymers, Polymer Blends, and Composites 205
1 Introduction 205
2 Static Tensile Tests 206
3 Physical Bending Test 209
4 Cyclic Tensile Test 211
5 Cyclic Compression Test 214
6 Toughness of SPMs 215
7 High-Temperature Nanoindentation Technique 218
8 Conclusions 220
References 222
Biodegradable Shape-Memory Polymers 224
1 Introduction 224
2 Biodegradable Shape-Memory Polymers (BSMP) 226
2.1 Poly(Lactide) and Its Derivatives 226
2.2 Poly(caprolactone) 227
2.3 Other Polymers 227
3 Applications of Shape-Memory Polymers 227
3.1 Tissue Engineering 228
3.2 Wound Closure Devices 230
3.3 Stents 231
3.4 Embolization 232
3.5 Drug release 234
4 Conclusion and Future Perspectives 235
References 236
Optical, Electrical, and Magnetic Properties of Shape-Memory Polymers, Polymer Blends, and Composites 242
1 Introduction 242
2 Optical Properties 244
2.1 Optical Response 244
2.2 Optical Reversibility 252
3 Electrical Properties 253
3.1 Electrical Property via Improved Dispersion of Conductive Fillers 255
3.2 Electrical Property via Formation of Double-Percolation Conductive Network 255
3.3 Electrical Property via Assembly of Conductive Channels 256
3.4 Electrical Property via Incorporation of Conductive Layers 258
4 Magnetic Properties 261
4.1 Magnetic Properties for Shape-Memory Effect 262
4.2 Magnetic Properties for Temperature Control 264
5 Outlook 266
6 Summary 267
References 269
Scattering and Other Miscellanies Techniques for the Characterization of Shape Memory Polymers 274
1 Shape Memory Polymers 275
1.1 Shape Memory Cycles 277
1.2 Shape Memory and Macromolecular Reorganization 278
2 Å and nm-Scale Structure by X-ray Scattering 279
2.1 Properties of X-rays 279
2.2 Bragg’s Condition 280
2.3 Scattering by Polymers 281
2.4 Random Microcrystalline Versus Oriented Specimens 281
2.5 Methods in X-ray Scattering 283
3 Structure Evolution and Shape Memory by X-ray Scattering 296
3.1 PCL-POSS Chemical–Physical Networks 296
3.2 PCL-POSS Chemical Networks 297
3.3 PCO Two-Way SMP Networks 299
3.4 Time-Resolved Synchrotron Scattering 302
4 Optical Microscopy and ?m-Scale Structure 303
4.1 Hot-Stage Optical Microscopy 304
4.2 Time-Resolved Optical Microscopy/Uniaxial Deformation 307
5 Small-Angle Light Scattering, SALS 308
6 Conclusions 310
References 311
Applications of Shape-Memory Polymers, and Their Blends and Composites 315
1 Introduction 315
1.1 What Are SMP/SMPC Materials? 315
2 Applications 317
3 Applications for Aerospace 318
4 Biomedical Applications 324
5 Other Applications 327
6 New Perspectives and Challenges 328
7 Conclusions 330
References 331

Erscheint lt. Verlag 1.7.2019
Reihe/Serie Advanced Structured Materials
Advanced Structured Materials
Zusatzinfo X, 329 p. 193 illus., 134 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik Maschinenbau
Wirtschaft
Schlagworte molecular modeling of polymers • nanopolymers • Polymer Rheology • Processability • thermal properties
ISBN-10 981-13-8574-2 / 9811385742
ISBN-13 978-981-13-8574-2 / 9789811385742
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich