Nicht aus der Schweiz? Besuchen Sie lehmanns.de
MARS Applications in Geotechnical Engineering Systems - Wengang Zhang

MARS Applications in Geotechnical Engineering Systems (eBook)

Multi-Dimension with Big Data

(Autor)

eBook Download: PDF
2019 | 1st ed. 2020
XXI, 240 Seiten
Springer Singapore (Verlag)
978-981-13-7422-7 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach's generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis. 



Dr. Wengang Zhang is a Professor at the School of Civil Engineering, and the founder and Director of the Green Eco-geotechnique Research Center, Chongqing University, China. He obtained his BSc and MSc degrees at Hohai University, China, and his Ph.D. degree at Nanyang Technological University, Singapore. He worked with Prof. Anthony Goh at NTU as a Project Officer, Research Student, Research Associate, and Research Fellow from 2009 to early 2016. He joined Chongqing University as a 'Hundred Young Talent Researcher' in May 2016, and in 2017 he was awarded the '1000 Plan Professorship for Young Talents'. His research interests include probabilistic assessment of underground cavern excavations, numerical modeling of deep braced excavation and reliability analysis, big data and machine learning methods in geotechnical engineering. He is currently a member of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) Technical Committees TC304 Reliability and TC309 Machine Learning. Dr. Zhang is the leading Guest Editor of Geoscience Frontier's special issue Reliability of Geotechnical Infrastructures. Prof. Zhang's publications include 'Multivariate adaptive regression splines for analysis of geotechnical engineering systems', 'Multivariate adaptive regression splines and neural network models for prediction of pile drivability', 'Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines' and 'An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines', which have received considerable attention from geotechnical academics and practitioners, as well as readers from interdisciplinary researchers.


This book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach's generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis. 
Erscheint lt. Verlag 30.4.2019
Zusatzinfo XXI, 240 p. 99 illus., 64 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Netzwerke
Informatik Weitere Themen Hardware
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Technik Bauwesen
Wirtschaft
Schlagworte Big Data • Geotechnical Engineering System • Limit State Funtions • meta model • Multivariate Adaptive Regression Splines • Performance Functions • Pile Drivability • Surrogate Model
ISBN-10 981-13-7422-8 / 9811374228
ISBN-13 978-981-13-7422-7 / 9789811374227
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich