Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
XXIX, 306 Seiten
Springer International Publishing (Verlag)
978-3-030-11596-8 (ISBN)

Lese- und Medienproben

Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development.

  • Provides fundamental knowledge on biomimetic lipid membranes;
  • Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques;
  • Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques;
  • Describes the integration of biomimetic membranes with current top-notch tools and platforms;
  • Examines applications in medicine, pharmaceutical industry, and environmental monitoring.



Dr. Fatma Ne?e KÖK is currently Associated Professor in the Molecular Biology and Genetics Department of Istanbul Technical University, Turkey. She graduated from the Chemical Engineering Department at the Middle East Technical University and received her M.Sc. and Ph.D degrees from Biotechnology Program at the same University in 1997 and 2001, respectively. After receiving a postdoctoral research fellowship from the Alexander von Humboldt Foundation, she spent 2.5 years in Germany, in a joint project of Max Planck Institute (MPI) for Polymer Research (Mainz) and MPI for Biochemistry (Martinstred) (2002-2005) working on artificial lipid membranes. Her research interests include biomaterials and tissue engineering scaffold design, biosensors, controlled release systems, and construction and characterization of artificial lipid bilayers. 

Dr. Ahu Arslan Yildiz is currently Assistant Professor in the Bioengineering Department at the Izmir Institute of Technology (IZTECH). Previously, she was an Assistant Professor at Okan University's Genetics and Bioengineering Department and a visiting fellow at the Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine. She received her BSc degree in Chemistry in 2003 from Hacettepe University and the MSc degree in 2006 in Chemistry from Middle East Technical University. She received her Ph.D. in Biology in 2010 from the Max-Planck Institute Polymer Research and Johannes Gutenberg University. She specializes in the field of artificial cell membrane and membrane receptor research. Her research interests include applications of biotechnology, including biomimetic systems, biomaterials, tissue engineering and regenerative medicine, 3D cell culture, diagnostic tools, drug screening and lab-on-a-chip microfluidic devices.

Dr. Fatih Inci is currently working as a Research Scientist (Faculty/Academic Staff) at Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection. Dr. Inci received his PhD degree from Istanbul Technical University (Turkey), focusing on artificial lipid membranes and their clinical and pharmaceutical applications on surface-sensitive platforms. During his Ph.D. studies, he was also appointed as a visiting scientist at the University of New South Wales (Sydney, Australia) and University of Technology Sydney (Australia). He also worked as a research scholar at Brigham and Women's Hospital (BWH)-Harvard Medical School, and Harvard-MIT Health Sciences and Technology Division (Boston, MA, United States). Dr. Inci was then appointed a Postdoctoral Research Fellow at BWH-Harvard Medical School and Stanford University School of Medicine (Palo Alto, CA, United States) in 2013 and 2014, respectively. Dr. Inci's area of excellence in research is to create micro- and nano-scale platform technologies in the fields of biomedical engineering, biotechnology and medicine by manipulating biomolecules, cells, and viruses in micro and nano-scale entities. His platform offers precise solutions for real-world challenges in clinical diagnostics, personalized medicine, cancer early detection, forensic science, and biomarker discovery. His research interests also focus on many applications of microfluidics, biosensors, nanoplasmonics, lab-on-a-chip, artificial lipid membranes, disease on-chip models, and drug delivery systems.

Preface 6
Contents 9
List of Figures 11
List of Tables 27
Structural and Mechanical Characterization of Supported Model Membranes by AFM 28
1 Model Lipid Membranes 29
2 AFM for SLBs Characterization: Methods 31
2.1 AFM Imaging 31
2.2 AFM-Based Force Spectroscopy 32
2.2.1 Breakthrough Force (Fb) Characterization and Dynamic Force Spectroscopy (DFS) 33
2.2.2 AFM-Based Force Clamp (AFM-FC) 37
2.2.3 AFM-Based Pulling Lipid Tubes 39
3 AFM for SLBs Characterization: Examples 40
3.1 Phospholipid Molecular Structure and SLBs Nanomechanics 40
3.2 Cholesterol in Membranes 42
3.3 Sphingolipids in Membranes 44
4 Final Remarks 47
References 47
To Image the Orientation and Spatial Distribution of Reconstituted Na+,K+-ATPase in Model Lipid Membranes 55
1 Introduction 55
1.1 Introduction to Structure of Na+,K+-ATPase 55
1.2 Introduction to Function of the Na+,K+-ATPase 56
1.3 Introduction to Physiological Relevance of the Na+,K+-ATPase 57
2 Experimental Protocol to Reconstitute Na+,K+-ATPase in Model Membranes 58
2.1 Enzyme Preparation 58
2.2 Proteoliposomes Preparation and Characterization 58
2.3 Preparation of proteoGUVs in Single Fluid Phase and Characterization 59
2.4 Preparation of proteoGUVs in Lo/Ld Phase and Characterization 61
3 Experimental Protocol to Detect Orientation of Individual Protein in the Membrane 61
3.1 Time and Length Scales 61
3.2 Experimental Protocol to Prepare Planar Lipid Bilayer (PLB) Patches 62
3.3 Imaging Membrane Phase and Protein Orientation in the PLB Patches 62
3.4 Quantifying Number Density and Spatial Distribution of Reconstituted Protein in the PLB Patches 63
3.5 Comparing Number Density of Reconstituted Protein in PLB Patches and in Free-Standing GUVs 67
4 Applications 67
4.1 Quantifying Membrane Phase Around the Protein in Ternary Patches 67
4.2 Imaging Protein Clusters in Ternary Patches Forming Microemulsion Droplets 69
4.3 Studies Involving Other P-Type ATPases 69
5 Discussions and Conclusions 69
5.1 Advantages and Disadvantages with the GUV-Collapse Method 69
5.2 Outlook 70
References 70
Asymmetric Model Membranes: Frontiers and Challenges 73
1 Introduction 73
1.1 Biological Membranes 73
1.2 Framework of Lipid Asymmetry 73
1.3 Maintaining Lipid Asymmetry 75
1.4 Role of Lipid Asymmetry 76
1.5 Explaining Model Membranes 77
2 Techniques to Prepare Asymmetric Vesicles 78
2.1 Protein-Mediated Synthesis of Asymmetric Vesicles 78
2.2 pH Gradient-Induced Lipid Asymmetry 80
2.3 Methyl-?-Cyclodextrin-Mediated Lipid Exchange 81
2.4 Other Cyclodextrin-Mediated Lipid Exchange 83
2.5 Simple Emulsions as Templates for Asymmetric Vesicles 83
2.6 Microfluidics to Generate Asymmetric Vesicles 86
2.7 Microfluidic Jetting for Asymmetric Vesicles 89
2.8 Limitations of Model Membranes 90
3 Concluding Remarks 92
References 93
Modeling of Cell Membrane Systems 98
1 Fundamentals of Biomembrane System Modeling 98
2 Building Biomembrane Models 107
2.1 Lipid Bilayers 107
2.2 Membrane Proteins 119
3 Multiscale Membrane System Simulations 122
4 Analysis Tools 126
5 Concluding Remarks 128
References 129
Molecular Dynamics Studies of Nanoparticle Transport Through Model Lipid Membranes 134
1 Brief Overview of Theoretical Modeling of Lipid Membranes and Molecular Dynamics Studies of Transport Processes Across Them 134
2 How Well Do Our Theoretical Model Systems Represent Real Membrane Properties and Processes? 136
3 Simulation Methods 141
3.1 Coarse-Grained Force Field for Modeling a Lipid Membrane 141
3.2 Construction of Nanoparticles 143
3.3 Nanoparticle Permeation Method 145
4 Findings: Properties and Dynamics of a Lipid Bilayer Membrane In Silico 146
4.1 Self-Assembly from an Isotropic Solution into a Bilayer 146
4.2 The Dynamic Nature of the Lipid Bilayer Structure In Silico 147
4.3 Lipid Bilayer Behavior Under Compression Across the Bilayer 150
5 Findings: Properties and Dynamics in Solution of a Gold Nanoparticle with Ligands, as a Function of Coverage and Ligand Length 153
5.1 Properties and Dynamics of a Gold Nanoparticle with Hydrophobic Ligands 153
5.2 Properties and Dynamics of a Gold Nanoparticle with Hydrophilic Ligands 154
6 Findings: Direct Transport of Gold Nanoparticles Across Bilayer Membranes 158
6.1 Interactions Between a Lipid Bilayer and a Nanoparticle at the Interface 158
6.2 The Nanoparticle Breaches the Outer Leaflet of the Bilayer Membrane 159
6.3 The Nanoparticle in the Center of the Bilayer Membrane 160
6.4 The Nanoparticle Exits the Bilayer Membrane 162
6.5 Molecular Events Accompanying Penetration of Nanoparticles into Lipid Bilayers 163
6.5.1 Lipid Flip-Flop 163
6.5.2 Lipid Displacement from the Membrane 165
6.5.3 Water Permeation 167
6.5.4 Ion Leakage 169
6.6 The Bilayer Membrane Recovers 169
7 Findings: Direct Transport of Gold Nanorods with Hydrophilic Ligands 170
7.1 Interactions Between a Lipid Bilayer and a Nanorod Starting from Entry to Exit, and the Permeation Mechanism 171
7.2 Molecular Events Accompanying Penetration of Nanorods into Lipid Bilayers and Recovery of the Membrane 175
7.3 Can the Predicted Rotational Behavior of the Nanorod be Observed Experimentally? 177
8 Prospects for Future Simulations to Answer Further Questions 179
References 181
Investigation of Cell Interactions on Biomimetic Lipid Membranes 191
1 Introduction 191
2 Cell Adhesion on Charged SLBs 192
3 SLBs Mimicking Cell–ECM Biointerfaces 193
3.1 Peptide-Functionalized SLBs 193
3.2 ECM Protein-Incorporated SLBs 197
4 SLBs Mimicking Cell–Cell Interactions 198
5 Cell Adhesion on Patterned SLBs 200
6 Conclusion 203
References 203
Tethered Lipid Membranes as Platforms for Biophysical Studies and Advanced Biosensors 206
1 Introduction to Tethered Membrane Systems 206
2 Common Methods for tBLM Assembly 209
3 Model Membranes and Tethered Membranes for Biosensing 210
4 Conclusion 212
Bibliography 212
Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering 215
1 Diagnostic Applications 215
1.1 Immunoassay Approaches 215
1.2 Micro- and Nano-Arrays 218
1.3 Naked-Eye Detection 219
2 Theranostic and Imaging Approaches 222
3 Vaccines 224
4 Tissue Engineering Applications 225
4.1 Cellular Differentiation and Functionality Approaches 226
4.2 Cellular Adhesion Feature 228
5 Conclusions 230
References 230
Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications 235
1 Introduction 235
2 Electroformation and Hydration 236
3 Extrusion Strategy 237
4 Flow Focusing 237
5 Pulsed Jetting Strategy 239
6 Emulsion-based Techniques 241
7 Array Strategies 242
8 Conclusions 243
References 244
Biomimetic Model Membranes as Drug Screening Platform 246
1 Introduction 246
2 Biomimetic Lipid Membrane for Drug Screening 253
2.1 Lipid Monolayers 254
2.2 Lipid Vesicles 255
2.3 Supported Lipid Bilayers 257
2.4 Nanodiscs 258
3 Characterization Techniques for Drug–Lipid Membrane/Receptor Interactions 260
4 Conclusion and Future Perspective 263
References 264
Biomimetic Membranes as an Emerging Water Filtration Technology 269
1 Introduction 269
2 Channel-Forming Structures 270
2.1 Natural Biomolecules Used in Membranes 271
2.1.1 Aquaporin 271
2.1.2 Ionophores 272
2.2 Artificial Water Channels 274
3 Biomimetic Membrane Fabrication Strategies 276
3.1 Fabrication Method 277
3.2 Vesicle and Water Channel Properties 279
3.3 Support Layer Properties 281
4 Membrane Applications 284
5 Future Work and Conclusion 296
References 297
Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants 304
1 Introduction 304
2 Methods for Preparation Biosensors Based on Lipid Films 305
2.1 Metal-Supported Lipid Layers 306
2.2 Stabilized Lipid Films Formed on a Glass Fiber Filter 306
2.3 Polymer-Supported Bilayer Lipid Membranes 309
2.4 Polymer Lipid Films Supported on Graphene Microelectrodes 309
3 Conclusions and Future Prospects 314
References 314
Index 317

Erscheint lt. Verlag 16.4.2019
Zusatzinfo XXIX, 306 p. 89 illus., 87 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Bauwesen
Technik Maschinenbau
Schlagworte biochemical engineering • Biomedical Applications • Biomimetic Membranes for Sensor • biomimetic membranes for water purification • Biomimetic Models • biosensing applications • Diagnostics • Lipid membranes • Membrane biophysics • membrane dynamics • microfluidics • Surface Chemistry • Surface sensing techniques
ISBN-10 3-030-11596-8 / 3030115968
ISBN-13 978-3-030-11596-8 / 9783030115968
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35