Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Prominent Feature Extraction for Sentiment Analysis - Basant Agarwal, Namita Mittal

Prominent Feature Extraction for Sentiment Analysis

Buch | Softcover
XIX, 103 Seiten
2019 | 1. Softcover reprint of the original 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-79775-5 (ISBN)
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model.

Authors pay attention to the four main findings of the book :
-Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features.
- Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis.
- The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis.

- Semantic relations among the words in thetext have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.

Introduction.- Literature Survey.- Machine Learning Approach for Sentiment Analysis.- Semantic Parsing using Dependency Rules.- Sentiment Analysis using ConceptNet Ontology and Context Information.- Semantic Orientation based Approach for Sentiment Analysis.- Conclusions and FutureWork.- References.- Glossary.- Index.

Erscheinungsdatum
Reihe/Serie Socio-Affective Computing
Zusatzinfo XIX, 103 p. 10 illus., 2 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 200 g
Themenwelt Medizin / Pharmazie Studium
Naturwissenschaften Biologie Humanbiologie
Schlagworte machine learning • Minimum Redundancy and Maximum Relevance feature s • Minimum Redundancy and Maximum Relevance feature selection • Prominent Feature Extraction • Semantic Parser • sentiment analysis
ISBN-10 3-319-79775-1 / 3319797751
ISBN-13 978-3-319-79775-5 / 9783319797755
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
23 Techniken, um Stress abzubauen, Negativspiralen zu unterbrechen …

von Nick Trenton

Buch | Softcover (2023)
FinanzBuch Verlag
CHF 25,20
produktiv sein ohne Stress – und mehr vom Leben haben

von Ali Abdaal

Buch | Softcover (2023)
dtv Verlagsgesellschaft
CHF 25,20
Wie Myrmecophile mit ihren Wirten interagieren

von Bert Hölldobler; Christina Kwapich

Buch | Softcover (2023)
Springer (Verlag)
CHF 97,95