Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Geometry of Physics - Theodore Frankel

The Geometry of Physics

An Introduction
Buch | Softcover
678 Seiten
1999
Cambridge University Press (Verlag)
978-0-521-38753-8 (ISBN)
CHF 48,80 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book is intended to provide a working knowledge of those parts of geometry that are essential for a deeper understanding of both classical and modern physics and engineering. This book will be useful to graduate and advanced undergraduate students of physics, engineering and mathematics.
This book is intended to provide a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism, thermodynamics, the deformation tensors of elasticity, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov-Bohm effect, Berry phase, and instanton winding numbers. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should also be of interest to mathematics students. This book will be useful to graduate and advanced undergraduate students of physics, engineering and mathematics. It can be used as a course text or for self study.

Preface; Part I. Manifolds, Tensors and Exterior Forms: 1. Manifolds and vector fields; 2. Tensors and exterior forms; 3. Integration of differential forms; 4. The Lie derivative; 5. The Poincaré Lemma and potentials; 6. Holonomic and non-holonomic constraints; Part II. Geometry and Topology: 7. R3 and Minkowski space; 8. The geometry of surfaces in R3; 9. Covariant differentiation and curvature; 10. Geodesics; 11. Relativity, tensors, and curvature; 12. Curvature and topology: Synge's theorem; 13. Betti numbers and De Rham's theorem; 14. Harmonic forms; Part III. Lie Groups, Bundles and Chern Forms: 15. Lie groups; 16. Vector bundles in geometry and physics; 17. Fiber bundles, Gauss–Bonnet, and topological quantization; 18. Connections and associated bundles; 19. The Dirac equation; 20. Yang–Mills fields; 21. Betti numbers and covering spaces; 22. Chern forms and homotopy groups; Appendix: forms in continuum mechanics.

Erscheint lt. Verlag 13.4.1999
Zusatzinfo 120 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 179 x 255 mm
Gewicht 1155 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie
ISBN-10 0-521-38753-1 / 0521387531
ISBN-13 978-0-521-38753-8 / 9780521387538
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90