Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Bayesian Inference - Hanns Ludwig Harney

Bayesian Inference

Data Evaluation and Decisions
Buch | Softcover
XIII, 243 Seiten
2018 | 2. Softcover reprint of the original 2nd ed. 2016
Springer International Publishing (Verlag)
978-3-319-82403-1 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This new edition offers a comprehensive introduction to the analysis of data using Bayes rule. It generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This is particularly useful when the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins, so that the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. New sections feature factorizing parameters, commuting parameters, observables in quantum mechanics, the art of fitting with coherent and with incoherent alternatives and fitting with multinomial distribution. Additional problems and examples help deepen the knowledge. Requiring no knowledge of quantum mechanics, the book is written on introductory level, with many examples and exercises, for advanced undergraduate and graduate students in the physical sciences, planning to, or working in, fields such as medical physics, nuclear physics, quantum mechanics, and chaos.

Hanns Ludwig Harney, born in 1939, professor at the University of Heidelberg. He has contributed to experimental and theoretical physics within the Max-Planck Institute for Nuclear Physics at Heidelberg. His interest is focused on symmetries, such as isospin and its violation, as well as chaos, observed as reproducible fluctuations. Since the 1990's, the symmetry properties of common probability distributions lead him to a reformulation of Bayesian inference.

Knowledge an Logic.- Bayes' Theorem.- Probable and Improbable Data.- Descriptions of Distributions I: Real x.- Description of Distributions II: Natural x .- Form Invariance I.- Examples of Invariant Measures.- A Linear Representation of Form Invariance.- Going Beyond Form Invariance: The Geometric Prior.- Inferring the Mean or Standard Deviation.- Form Invariance II: Natural x .- Item Response Theory.- On the Art of Fitting .- Problems and Solutions.- Description of Distributions I.- Real x.- Form Invariance I.- Beyond Form Invariance: The Geometric Prior.- Inferring Mean or Standard Deviation.- Form Invariance II: Natural x .- Item Response Theory.- On the Art of Fitting.

Erscheinungsdatum
Zusatzinfo XIII, 243 p. 39 illus., 3 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 3985 g
Themenwelt Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Bayesian Decision Theory • Commuting Parameters Physics • Data Analysis Physics • Factorizing Parameters Physics • Fitting Experimental Data • Fourier Expansion • Geometric Prior Distribution • Histogram Coherent Alternative • Histogram Fitting • Multinomial distribution • Partial Form Invariance • Statistical Analysis Physics • Statistical Testing and Model Choice • Symmetry Group Physics
ISBN-10 3-319-82403-1 / 3319824031
ISBN-13 978-3-319-82403-1 / 9783319824031
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Lehrbuch

von Wilhelm Kulisch; Regine Freudenstein

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 55,95
für Studierende der Naturwissenschaften und Technik

von Paul A. Tipler; Peter Kersten; Gene Mosca

Buch | Hardcover (2024)
Springer Spektrum (Verlag)
CHF 109,95