Rail Crack Monitoring Using Acoustic Emission Technique (eBook)
XXVIII, 136 Seiten
Springer Singapore (Verlag)
978-981-10-8348-8 (ISBN)
This thesis provides an innovative strategy for rail crack monitoring using the acoustic emission (AE) technique. The field study presented is a significant improvement on laboratory studies in the literature in terms of complex rail profile and crack conditions as well as high operational noise. AE waves induced by crack propagation, crack closure, wheel-rail impact and operational noise were obtained through a series of laboratory and field tests, and analyzed by wavelet transform (WT) and synchrosqueezed wavelet transform (SWT). A wavelet power-based index and the enhanced SWT scalogram were sequentially proposed to classify AE waves induced by different mechanisms according to their energy distributions in the time-frequency domain. A novel crack sizing method taking advantage of crack closure-induced AE waves was developed based on fatigue tests in the laboratory. The propagation characteristics of AE waves in the rail were investigated, and Tsallis synchrosqueezed wavelet entropy(TSWE) with time was finally brought forward to detect and locate rail cracks in the field. The proposed strategy for detection, location and sizing of rail cracks helps to ensure the safe and smooth operation of the railway system. This thesis is of interest to graduate students, researchers and practitioners in the area of structural health monitoring.
Supervisor’s Foreword 6
Parts of this thesis have been published in the following journal articles:Li, D. *, Kuang, K. S. C., Koh, C. G. (2017). Rail crack monitoring based on Tsallis synchrosqueezed wavelet entropy of acoustic emission signals: a field study. Structural Health Monitoring. Prepublished online December 4, 2017, DOI: 10.1177/1475921717742339.Li, D., Kuang, K. S. C. *, Koh, C. G. (2017). Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves. Measurement Science and Technology. 28(6): 065601.Kuang, K. S. C., Li, D.*, Koh, C. G. (2016). Acoustic emission source location and noise cancellation for crack detection in rail head. Smart Structures and Systems. 18(5): 1063–1085. 8
Acknowledgements 9
Contents 10
Abbreviations 13
Nomenclature 14
List of Figures 16
List of Tables 21
Summary 22
1 Introduction 24
1.1 Background 24
1.2 Objectives and Scope of Research 26
1.3 Research Significance 26
1.4 Thesis Outline 27
References 29
2 Literature Review 30
2.1 Common Defects of Rail Track 30
2.1.1 Surface Cracks 30
2.1.2 Internal Cracks 34
2.2 Current Rail Monitoring Techniques 34
2.2.1 Acceleration-Based Technique 35
2.2.2 Automated Visual Technique 35
2.2.3 Ultrasonic Techniques 36
2.2.4 Electromagnetic Techniques 38
2.2.5 Magnetic Induction Technique 38
2.3 AE Technique and Its Applications 39
2.3.1 Introduction to AE Technique 39
2.3.2 Characterization of AE Waves 41
2.3.3 Relevant Applications of AE Technique 43
2.4 State-of-Art of Rail Condition Monitoring Using AE 45
References 47
3 Propagation Features and Source Location 52
3.1 Introduction 52
3.2 Experimental Procedure 54
3.2.1 Pencil Lead Break (PLB) 55
3.2.2 Field PLB Test 55
3.2.3 Field Train Pass-by Test 56
3.2.4 AE Data Acquisition 57
3.3 Time-Frequency Representation of AE Waves 58
3.3.1 Continuous Wavelet Transform (CWT) 58
3.3.2 Optimal Mother Wavelet Selection 59
3.3.3 Time-Frequency Characteristics of AE Waves 61
3.4 Propagation Features of AE Waves 62
3.4.1 Theory of Ultrasonic Propagation 63
3.4.2 Attenuation of AE Waves in Rail Head 66
3.4.3 Dispersion of AE Waves in Rail Head 67
3.5 Source Location Methods 68
3.5.1 Time-of-Arrival (TOA) Method 68
3.5.2 Wavelet Transform-Based Modal Analysis Location (WTMAL) Method 69
3.6 Hilbert Transform-Based Noise Cancellation Method 71
3.7 Results and Discussion 73
3.7.1 Influence of Operational Noise on Crack Detection 73
3.7.2 Source Location Without Noise Using TOA Method 76
3.7.3 Source Location Without Noise Using WTMAL Method 76
3.7.4 Source Location with Noise Using WTMAL Method 79
3.8 Concluding Remarks 82
References 85
4 Sizing of Fatigue Cracks 87
4.1 Introduction 87
4.2 Experimental Procedure 88
4.2.1 Rail Steel Specimens 88
4.2.2 Fatigue Tests 89
4.2.3 AE Data Acquisition 91
4.2.4 Crack Length Calculation 92
4.2.5 Crack Surface Observation 93
4.3 AE Wave Classification 93
4.3.1 Wavelet Power (WP)-Based Classification Index 94
4.3.2 Threshold Determination for the Classification Index 99
4.3.3 Frequency Bands Selection for the Classification Index 101
4.4 Fatigue Crack Sizing Methods 101
4.4.1 Traditional Method Based on CP-Induced AE Waves 101
4.4.2 Novel Method Based on CC-Induced AE Waves 102
4.4.3 Comparison of Crack Sizing Methods 103
4.5 Results and Discussion 103
4.5.1 AE Waves Classification 103
4.5.2 Crack Sizing Using the Traditional Method 105
4.5.3 Crack Sizing Using the Novel Method 108
4.6 Concluding Remarks 111
References 112
5 Field Monitoring of Rail Cracks 114
5.1 Introduction 114
5.2 Experimental Procedure 117
5.2.1 Field Tests 117
5.2.2 AE Data Acquisition 119
5.3 Time-Frequency Representation of AE Waves 120
5.3.1 Synchrosqueezed Wavelet Transform (SWT) 120
5.3.2 Analysis of Example AE Waves 123
5.4 Crack Identification and Location Based on Time-Tsallis Synchrosqueezed Wavelet Entropy (TSWE) 125
5.4.1 Tsallis Entropy 126
5.4.2 TSWE with Time 130
5.4.3 Determination of Parameters in TSWE 133
5.4.4 Results and Discussion 138
5.5 Classification of Crack-Related AE Waves Based on Enhanced SWT Scalogram 145
5.5.1 SWT Enhanced by Gamma Correction 146
5.5.2 Results and Discussion 146
5.6 Concluding Remarks 148
References 151
6 Conclusions and Future Work 154
6.1 Conclusions 154
6.2 Future Work 156
Erscheint lt. Verlag | 23.6.2018 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XXVIII, 136 p. 99 illus., 94 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
Technik ► Maschinenbau | |
Schlagworte | Fatigue crack growth • fracture mechanics • Internal Cracks • Non-Destructive Testing (NDT) • Pencil Lead Break (PLB) • Rail Defects • Structural Health Monitoring • surface cracks • Tsallis Synchrosqueezed Wavelet Entropy (TSWE) • Wavelet Transform Based Modal Analysis (WTMA) |
ISBN-10 | 981-10-8348-7 / 9811083487 |
ISBN-13 | 978-981-10-8348-8 / 9789811083488 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich