Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Markov Chain Aggregation for Agent-Based Models - Sven Banisch

Markov Chain Aggregation for Agent-Based Models

(Autor)

Buch | Softcover
XIV, 195 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-79691-8 (ISBN)
CHF 112,30 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting "micro-chain" including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the updating rule and governs the dynamics at a Markovian level, plays a crucial part in the analysis of "voter-like" models used in population genetics, evolutionary game theory and social dynamics. The book demonstrates that the problem of aggregation in ABMs - and the lumpability conditions in particular - can be embedded into a more general framework that employs information theory in order to identify different levels and relevant scales in complex dynamical systems

Introduction.- Background and Concepts.- Agent-based Models as Markov Chains.- The Voter Model with Homogeneous Mixing.- From Network Symmetries to Markov Projections.- Application to the Contrarian Voter Model.- Information-Theoretic Measures for the Non-Markovian Case.- Overlapping Versus Non-Overlapping Generations.- Aggretion and Emergence: A Synthesis.- Conclusion.

Erscheinungsdatum
Reihe/Serie Understanding Complex Systems
Zusatzinfo XIV, 195 p. 83 illus., 18 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 332 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Optik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte agent-based modelling • Complexity • Contrarian Voter Model • Dynamics of Complex Systems • Lumpability and State-space Reduction • Markov Processes • Microscopic Markov Chains • Scaling of Complex Dynamical Systems • Voter-like Models
ISBN-10 3-319-79691-7 / 3319796917
ISBN-13 978-3-319-79691-8 / 9783319796918
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95