Fundamentals of Optical Computing Technology (eBook)
XII, 295 Seiten
Springer Singapore (Verlag)
978-981-10-3849-5 (ISBN)
This book presents the principles, experimental technologies, up-to-date research findings and applications of various optical-computing technologies and devices. It also discusses semiconductor multiple quantum well (MQW) photoelectronic devices, vertical-cavity surface-emitting lasers (VCSELs), lasers, micro optical elements and diffractive optical elements, optical storage, optical parallel interconnections, and optical-buffer technology as the main technologies for optical computing. Furthermore, it explores the potential of optical-computing technology. It offers those involved in optical design, photonics, and photoelectronic research and related industries insights into the fundamentals and theories of optical computing, enabling them and to extend and develop the functions of fundamental elements to meet the requirement of optical-computing systems.
This book presents the principles, experimental technologies, up-to-date research findings and applications of various optical-computing technologies and devices. It also discusses semiconductor multiple quantum well (MQW) photoelectronic devices, vertical-cavity surface-emitting lasers (VCSELs), lasers, micro optical elements and diffractive optical elements, optical storage, optical parallel interconnections, and optical-buffer technology as the main technologies for optical computing. Furthermore, it explores the potential of optical-computing technology. It offers those involved in optical design, photonics, and photoelectronic research and related industries insights into the fundamentals and theories of optical computing, enabling them and to extend and develop the functions of fundamental elements to meet the requirement of optical-computing systems.
Prof. Xiujian Li is a professor at College of Science, National University of Defense Technology, Changsha, China. He receives his Bachlor, Master and PhD degree from National University of Defense Technology in 1997, 2002 and 2007, respectively. He has been teaching in National University of Defense Technology for 13 years. He has been director of Modern Ultra-fast Optics Lab in NUDT since 2009, and co-director of Center of Materials Science in NUDT since 2011. In 2011-2012, he visited Columbia University, USA as an visiting professor. He has published more than 50 peer-reviewed journal and transaction full papers in English (including papers in press). His research focuses on Optical information processing, Silicon photonics, Ultra-fast optics and Optical computing technology.The co-authors, Dr. Zhengzheng Shao, Mr.Mengjun Zhu and Prof. Junbo Yang are all from the College of Liberal Arts and Sciences, National University of Defense Technology, China.
Preface 5
Structure of the Book 7
Contents 9
1 Summary of Optical Computing Technology 13
1.1 Phylogeny and Trend of Computing 13
1.1.1 Primal Computing Age 13
1.1.2 Handwrought Computing Age 13
1.1.3 Mechanical and Electromechanical Computing Age 15
1.1.4 Electronic Computing Age 18
1.1.5 Status and Trend of Super Parallel Computer 21
1.1.6 Prospect of Future Computer 23
1.2 Concept of Optical Computing 25
1.2.1 Basic Operation of Optics for Computing 27
1.2.2 Basic Models for Optical Computer Framework 28
1.3 Background in Optical Operation 30
1.3.1 Holographic Grating 30
1.3.2 Optical Fourier Transform 33
1.3.3 Abbe Imaging Principle and Spatial Filtering 35
1.3.4 Optical Correlator 37
1.3.5 Optical Numerical Processing 39
References 45
2 Semiconductor MQWs Photo-Electronic Logic Devices 46
2.1 Basic Principle of Semiconductor MQWs 46
2.1.1 Micro- and Nano-Materials and Quantum-Limited Effect 46
2.1.2 Semiconductor MQWs and Self-electro-Optical Effect 48
2.2 Principle and Properties of SEEDs 54
2.2.1 How to Achieve Self-electro-Optic Effect 54
2.2.2 Diode-Biased SEEDs to Achieve Bistability 56
2.2.3 Symmetry SEEDs 57
2.2.4 Symmetry SEEDs to Achieve Boolean Operation 59
2.3 Optimization and Characteristics of MQW’s Modulator 62
2.3.1 Reflective SEEDs Modulator 62
2.3.2 Asymmetry Reflective F-P SEEDs Modulator 62
2.3.3 Performance of MQW’s SEEDs Modulator 66
2.4 Flat Integration of SEEDs 70
2.4.1 Multi-Quantum Wells Modulator and Electronic Circuit Integration—Smart Pixels 70
2.4.2 MQW’s Spatial Light Modulator 72
2.5 Summary and Prospect 75
References 78
3 Minitype Light Source for Optical Computing 80
3.1 Introduction 80
3.2 Wedge-Emitting Photoelectric Elements 82
3.2.1 LED and LD 82
3.2.2 Functional Optical Interconnect and Semiconductor Light Source 90
3.3 Structure and Principle of LED and LD Mode Vertical-to-Surface Transmission Light Source 94
3.3.1 LED Mode Vertical-to-Surface Transmission Light Source 94
3.3.2 LD Mode Vertical-to-Surface Transmission Light Source 96
3.3.3 Integration of Vertical-to-Surface Transmission Light Source 98
3.4 VCSELs 99
3.4.1 Structure of VCSELs 99
3.4.2 Characteristics of VCSELs 106
3.4.3 Optimum Design of VCSELs 111
3.4.4 Current State and Development Trend of VCSELs 112
3.5 Applications of Minitype-Laser 115
3.5.1 Optical Logic Elements 115
3.5.2 Serial–Parallel Data Transform 117
3.5.3 Parallel Optical Data Link 118
3.6 Summary and Prospect 119
References 122
4 Micro- and Diffractive Optical Elements 123
4.1 Introduction 123
4.2 Design of Micro-Optical Elements 126
4.2.1 Geometric Optical Design 126
4.2.2 Scalar Analysis for Design 132
4.2.3 Vector Analysis for Design 133
4.3 Fabrication Technology for Micro-Optical Elements 134
4.3.1 Ion Exchange 134
4.3.2 Analog Light Etching with Phase Mark 137
4.3.3 Electron Beam Nanofabrication 139
4.4 Planar Micro-lens Array 140
4.4.1 Swelled Planar Micro-lens 140
4.4.2 Application of Planar Micro-lens Array 141
4.5 Theory Foundation of Diffractive Optical Elements 143
4.5.1 Linear Blazed Grating 143
4.5.2 Diffractive Lens 145
4.5.3 Diffractive Efficiency 149
4.6 Binary Optical Elements 150
4.6.1 Design of Binary Optical Elements 150
4.6.2 Fabrication of Binary Optical Elements 151
4.6.3 Application of Binary Optical Elements 153
4.7 Summary and Prospect 156
References 158
5 Optical Storage 160
5.1 Introduction 160
5.2 Principle and Application of Two-Photon Interaction [4] 161
5.2.1 Two-Photon Interaction 161
5.2.2 Two-Photon Interaction to Achieve 3D Storage 164
5.3 Photorefractive Effect and Spatial Light Modulator 171
5.3.1 Photorefractive Effect and Crystals 171
5.3.2 Optically Addressed Photorefractive SLM 175
5.3.3 Photorefractive SLM to Perform Optical Storage 183
5.4 Optical Holographic Storage 188
5.4.1 Introduction 188
5.4.2 Optical Volume Holographic Storage 189
5.5 Near-Field Optical Storage 194
5.5.1 Introduction to Super-Resolution Near-Field Structure Optical Storage 194
5.5.2 Principle of Super-Resolution Near-Field Structure Optical Storage 198
5.5.3 Near-Field Optical Characteristics of Super-Resolution Thin Film 202
5.6 Summary and Prospect 205
References 206
6 Parallel Optical Interconnections 208
6.1 Introduction 208
6.2 Optical Switch and Interconnection 209
6.2.1 Brief of Optical Switch Technology 209
6.2.1.1 Performance Parameters of Optical Switching 209
6.2.1.2 Types of Optical Switches 211
6.2.2 Brief of Optical Interconnection 215
6.2.2.1 Principles and Advantages of Optical Interconnection Networks 215
6.2.2.2 Realization Mode of Optical Interconnect Technology 216
6.3 Fundamental of Perfect Shuffle Switch Network 217
6.3.1 Basic Theory for Perfect Shuffle Switch 217
6.3.1.1 Mathematical Definition of PS Switch 218
6.3.1.2 Matrix Description of PS Switches 220
6.3.1.3 PS Transformation Characteristics 225
6.3.2 Two-Dimensional Perfect Shuffle Switch Theory 228
6.3.2.1 2D-PS Transformation 228
6.3.2.2 The Relationship Between 2D-FPS and 2D-Separable Shuffle 229
6.3.3 Implement Method for PS and FPS Switch 232
6.3.3.1 FPS Transformation 232
6.3.3.2 PS and FPS Implementation Method 232
6.3.3.3 Comparison of Various PS Implementations 239
6.4 Implement Perfect Shuffle Switch with Micro-Optics Elements 239
6.4.1 Micro-blazed Grating Array to Achieve Left Shuffle Switch 240
6.4.1.1 Micro-blazed Grating Transmittance Function 240
6.4.1.2 Fresnel Diffraction Analysis 241
6.4.1.3 LPS Based on Micro-blazed Grating Array 242
6.4.1.4 Micro-blazed Grating Array to Achieve RPS and IPS Switch 246
6.4.2 Micro-blazed Grating Array to Achieve 2D Perfect Shuffle Switch 251
6.4.2.1 2d FPS 251
6.4.2.2 Micro-blazed Grating Array to Achieve 2D FPS 252
6.5 Optical Interconnections Based on Micro-Optical Elements 257
6.5.1 Omega Optical Interconnection with Micro-Optical Elements 258
6.5.1.1 All FPS Non-blocking Omega Optical Interconnection 258
6.5.1.2 Switch State Selection of Multi-stage FPS 259
6.5.1.3 Implement Node Switch and Interconnect Stage of Omega Switching Network 261
6.5.1.4 Optical Switching Module Design for All FPS Non-blocking Omega Network 262
6.5.2 Crossover Optical Interconnection with Micro-Optical Elements 264
6.5.2.1 Full-crossover network 265
6.5.2.2 Characteristics of 3D Full-crossover network 266
6.5.2.3 Full-Cross Connection Based on Micro-Blazed Grating Array 267
6.5.2.4 Design of 3D Full-Crossover Network Optical Module 269
6.5.2.5 Discussion and Analysis 269
6.5.3 Banyan Optical Interconnection with Micro-Optical Elements 270
6.5.3.1 Characteristics of Banyan Tree Network 271
6.5.3.2 Crossover Interconnection in Free Space with Micro-Optical Elements 272
6.5.3.3 Experimental Module Design of 2D Banyan Network 273
6.5.3.4 Interconnection Function Analysis of 2D Banyan Network 275
6.5.4 Demultiplexer and Beam Splitter Based on Micro-Blazed Grating 279
6.5.4.1 Diffraction Characteristics of Multi-step Micro-Blazed Gratings 280
6.5.4.2 Example 284
6.6 Summary and Prospect 286
References 289
7 Optical Buffer and Full-Optical Synchronization 291
7.1 Introduction 291
7.2 Optical Buffer and Full-Optically Synchronization Based on Slow Light 293
7.2.1 Principle of Slow Light 293
7.2.2 Introduction to Slow Light 296
7.3 EIT and Atomic Vapor Systems 297
7.4 Scattering and Fiber Systems 298
7.5 Coherent Population Oscillations and Semiconductor Materials 300
7.6 Silicon-Based Waveguide Slow Light Device [12] 300
7.7 Summary and Prospect 302
References 303
Erscheint lt. Verlag | 12.5.2018 |
---|---|
Zusatzinfo | XII, 295 p. 266 illus., 76 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | does • MQWs • Optical buffer • Optical computing • Optical Interconnect • Optical Storage • optical switch • ultrafast optics • VCSELs |
ISBN-10 | 981-10-3849-X / 981103849X |
ISBN-13 | 978-981-10-3849-5 / 9789811038495 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich