Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research - Chao Shang

Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research (eBook)

(Autor)

eBook Download: PDF
2018 | 1st ed. 2018
XVIII, 143 Seiten
Springer Singapore (Verlag)
978-981-10-6677-1 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial production contexts.

The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.

 


This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial production contexts.The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.

Supervisor’s Foreword 6
Preface 8
Part of this thesis has been published in the following journal articles: 9
Acknowledgements 10
Contents 11
Acronyms 14
1 Introduction 16
1.1 Background 16
1.2 Literature Review on Multivariate Statistical Process Monitoring 17
1.2.1 Principal Component Analysis 18
1.2.2 Current Research Status of Process Monitoring 20
1.3 Literature Review on Data-driven Soft Sensor Modeling 22
1.3.1 Partial Least Squares 23
1.3.2 Current Research Status of Soft Sensing 25
1.4 Challenges and Opportunities 27
1.5 Contents and Outline 29
1.6 Conclusions 31
References 31
2 Monitoring of Operating Condition and Process Dynamics with Slow Feature Analysis 35
2.1 Introduction 35
2.2 Slow Feature Analysis---Revisit 37
2.2.1 Definition of Slowness and Some Notations 37
2.2.2 Optimization Problem 38
2.2.3 Solution Algorithm 39
2.2.4 Geometric and Statistical Properties of SFA 41
2.2.5 Comparison with Classic Latent Variable Models 42
2.3 Process Monitoring with SFA 43
2.3.1 Dimension Reduction of SFA 43
2.3.2 Monitoring Statistics Design with Slow Features 45
2.4 Case Studies 46
2.4.1 Simulated CSTR 46
2.4.2 TE Benchmark Process 52
2.5 Conclusions 59
References 61
3 Control Performance Monitoring and Diagnosis Based on SFA and Contribution Plot 63
3.1 Introduction 63
3.2 Control Performance Monitoring with SFA 64
3.3 Control Performance Diagnosis with Contribution Analysis 65
3.3.1 Revisiting Contribution Analysis 65
3.3.2 Control Performance Diagnosis 66
3.3.3 Comparison with the Covariance-Based Approach 67
3.4 Case Studies 70
3.4.1 A Simple Simulated Multivariate Process 70
3.4.2 TE Benchmark Process 72
3.5 Conclusions 77
References 77
4 Recursive SFA Algorithm and Adaptive Monitoring System Design 1
4.1 Introduction 79
4.2 Updating Law for Covariance Matrices 80
4.3 The Recursive SFA Algorithm 83
4.3.1 Improved Monitoring Statistics 83
4.3.2 Rank-One Modification for the First Decomposition 83
4.3.3 OIP Algorithm for the Second Decomposition 84
4.3.4 Complexities of the RSFA Algorithm 85
4.4 Adaptive Monitoring System Design 86
4.4.1 Control Limits Updating 86
4.4.2 An Improved Stopping Criterion for Model Updating 87
4.5 Case Studies 88
4.5.1 Simulated CSTR 88
4.5.2 An Industrial Heating Furnace System 90
4.6 Conclusions 95
References 95
5 Probabilistic Slow Feature Regression for Dynamic Soft Sensing 96
5.1 Introduction 96
5.2 Probabilistic SFA 98
5.2.1 Mathematical Definition 99
5.2.2 Parameter Estimation Using the EM Algorithm 101
5.3 Soft Sensor Modeling Based on Probabilistic Slow Feature Regression 106
5.3.1 Probabilistic Slow Feature Regression 106
5.3.2 Online Implementation 107
5.4 Case Studies 109
5.4.1 A Hybrid Tank System 109
5.4.2 SRU Process 116
5.5 Conclusions 119
References 119
6 Enhanced Dynamic PLS with Temporal Smoothness for Soft Sensing 121
6.1 Introduction 121
6.2 Dynamic PLS with Temporal Smoothness Regularization 124
6.2.1 Problem Description 124
6.2.2 Optimization Problem 126
6.2.3 Implementation Procedure in Soft Sensing 127
6.3 Case Studies 127
6.3.1 Numerical Simulations 127
6.3.2 TE Benchmark Process 132
6.4 Conclusions 133
References 134
7 Nonlinear Dynamic Soft Sensing Based on Bayesian Inference 136
7.1 Introduction 136
7.2 Support Vector Machine and Its Probabilistic Interpretation 137
7.2.1 Problem Description 137
7.2.2 Bayesian Interpretation 138
7.3 Nonlinear Dynamic Soft Sensor Model Based on FIR and SVM 139
7.4 Parameter Optimization Based on Bayesian Inference 140
7.4.1 Optimizing Model Parameters of SVM 141
7.4.2 Optimizing Regularization Parameters 141
7.4.3 Optimizing Kernel Parameter 143
7.4.4 Optimizing Dynamic Parameters in FIR 144
7.5 Case Studies 145
7.5.1 A Simulated Example 145
7.5.2 Online Prediction of Propylene Melt Index 148
7.6 Conclusions 150
References 150
8 Conclusions and Recommendations 152
8.1 Concluding Remarks 152
8.2 Recommendations for Future Work 153

Erscheint lt. Verlag 22.2.2018
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XVIII, 143 p. 59 illus., 46 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Data-driven Methods • Fault Diagnosis • Industrial Process Control • Process Data Analytics • process monitoring • Quality Control, Reliability, Safety and Risk • Soft Sensing
ISBN-10 981-10-6677-9 / 9811066779
ISBN-13 978-981-10-6677-1 / 9789811066771
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Decipher complex relationships with advanced R techniques for …

von Subhajit Das

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65
Discover tactics to decrease churn and expand revenue

von Jeff Mar; Peter Armaly

eBook Download (2024)
Packt Publishing (Verlag)
CHF 24,60