Metal Nanoparticles (eBook)
300 Seiten
Wiley-VCH (Verlag)
978-3-527-80706-2 (ISBN)
Aimed at stimulating further research in this field, the book serves as an reference guide for academics and professionals working in the field of chemistry and nanotechnology.
Sreekanth Thota is a Visiting Researcher at the Center for Technological Development in Health, Fundac?o Oswaldo Cruz - Fiocruz in Rio de Janeiro, Brazil. He studied Pharmaceutical Chemistry at Kakatiya University (India) and Rajiv Gandhi University of Health Sciences (Bangalore, India) and obtained his Ph.D from Jawaharlal Nehru Technological University Hyderabad (India) in 2011. He then did postdoctoral work at Colorado State University, USA. He received the 2013 CAPES-Fiocruz, Visiting Researcher award and has published over 40 articles in peer-reviewed journals. His research interest is focused on the drug discovery, medicinal chemistry, fundamental chemistry and biochemistry of ruthenium and other transition metal ions leading to applications in medicine.
Debbie C. Crans is Professor of Organic and Inorganic Chemistry and in the Cell and Molecular Biology Program at Colorado State University, Fort Collins, USA. She obtained her Ph.D. in Chemistry from Harvard University with George M. Whitesides, USA, in 1985. She did a postdoctoral fellowship with Orville L. Chapman and Paul D. Boyer at UCLA in 1986. Her research interests lie in biological chemistry with expertise in metals in medicine and coordination chemistry with a focus on transition metals such as vanadium and platinum and interests in membrane model systems and hydrophobic compounds and lipids such as menaquinone. She received the Vanadis Award in 2004 and in the 2015 Cope Scholar Award. She has published over 190 articles in peer-reviewed journals.
Sreekanth Thota is a Visiting Researcher at the Center for Technological Development in Health, Fundação Oswaldo Cruz - Fiocruz in Rio de Janeiro, Brazil. He studied Pharmaceutical Chemistry at Kakatiya University (India) and Rajiv Gandhi University of Health Sciences (Bangalore, India) and obtained his Ph.D from Jawaharlal Nehru Technological University Hyderabad (India) in 2011. He then did postdoctoral work at Colorado State University, USA. He received the 2013 CAPES-Fiocruz, Visiting Researcher award and has published over 40 articles in peer-reviewed journals. His research interest is focused on the drug discovery, medicinal chemistry, fundamental chemistry and biochemistry of ruthenium and other transition metal ions leading to applications in medicine. Debbie C. Crans is Professor of Organic and Inorganic Chemistry and in the Cell and Molecular Biology Program at Colorado State University, Fort Collins, USA. She obtained her Ph.D. in Chemistry from Harvard University with George M. Whitesides, USA, in 1985. She did a postdoctoral fellowship with Orville L. Chapman and Paul D. Boyer at UCLA in 1986. Her research interests lie in biological chemistry with expertise in metals in medicine and coordination chemistry with a focus on transition metals such as vanadium and platinum and interests in membrane model systems and hydrophobic compounds and lipids such as menaquinone. She received the Vanadis Award in 2004 and in the 2015 Cope Scholar Award. She has published over 190 articles in peer-reviewed journals.
Cover 1
Title Page 5
Copyright 6
Contents 7
Chapter 1 Introduction 13
1.1 History of Metal Complexes 13
1.1.1 Introduction 13
1.1.2 Metal Complexes 13
1.1.3 Metal Complexes in Medicine 14
1.2 Nanotechnology 14
1.2.1 Introduction 14
1.2.2 Development of Nanotechnology 14
1.2.3 Nanotechnology in Medicine 15
1.3 Nanoparticles 16
1.3.1 Introduction 16
1.3.2 Development of Nanoparticles 17
1.3.2.1 Liposome?Based Nanoparticles 17
1.3.2.2 Polymeric Nanoparticles 17
1.3.2.3 Metal Nanoparticles 17
1.3.3 Nanoparticles in Science and Medicine 18
1.4 Nanotechnology?Supported Metal Nanoparticles 19
Acknowledgment 19
References 19
Chapter 2 Methods for Preparation of Metal Nanoparticles 27
2.1 Introduction 27
2.2 Methods for Preparation of Metallic NPs 27
2.2.1 Physical and Chemical Methods 27
2.2.2 Green and Bio?based Strategies 31
2.3 Conclusion 36
References 36
Chapter 3 Metal Nanoparticles as Therapeutic Agents: A Paradigm Shift in Medicine 45
3.1 Introduction 45
3.2 Metal Nanoparticles in Diagnostics 47
3.2.1 Nanoparticles as Biolabels 47
3.2.2 Nanoparticulate Detection of Proteins 47
3.2.3 Nanobiosensing 48
3.2.4 In vivo Imaging 49
3.3 Advanced Drug Delivery 50
3.4 Nanoparticle?Mediated Gene Transfer 51
3.5 Nanotechnology in Regenerative Therapies 53
3.5.1 Tissue Engineering and Implants 53
3.5.2 Bone Regeneration Materials 53
3.5.3 In Dentistry 54
3.5.4 Cell Therapy 55
3.6 Nanoparticles–Essential Oils Combination Against Human Pathogens 55
3.7 Conclusion 56
Acknowledgment 56
References 56
Chapter 4 Nanoparticles for Imaging 61
4.1 Introduction 61
4.2 Nanoparticles 61
4.3 Nanoparticles as Diagnostic Probes 64
4.3.1 Nanoparticles as Blood Pool Contrast Agents 64
4.3.2 Imaging for MPS 66
4.3.3 Cell Labeling and Tracking 69
4.3.4 Labeling Implants, Transplants, and Grafts 72
4.3.5 Nano? and Microparticles for Molecular Imaging 74
4.4 Nanoparticle?Based Theranostics 79
4.4.1 Nanoparticles for Imaging?Guided Interventions 79
4.4.2 Nano? or Microparticles for Imaging?Guided Hyperthermia Treatment 79
4.4.3 Imaging?Guided Drug Delivery 81
4.5 Conclusion 82
References 83
Chapter 5 Soft?Oxometalates: A New State of Oxometalates and Their Potential Applications as Nanomotors 95
5.1 Introduction to Soft?Oxometalates (SOMs) 95
5.1.1 Classification of Soft?Oxometalates 96
5.1.1.1 Spontaneously Formed Soft?Oxometalates 96
5.1.1.2 Designed Soft?Oxometalates 96
5.2 Application of Soft?Oxometalates 97
5.2.1 Control of Morphology of SOMs 97
5.2.2 SOMs in Catalysis 98
5.2.3 SOMs in Patterning 98
5.3 Active Nano/micro Motors 101
5.3.1 Catalytic Motors 101
5.3.2 Magnetically Propelled Motors 101
5.3.3 Electrically Propelled Motors 102
5.3.4 Light Driven Motors 102
5.3.5 Ultrasonically Driven Motors 102
5.4 Micro?Optomechanical Movement (MOM) in Soft?Oxometalates 102
5.5 Autonomous Movements Induced in Heptamolybdate SOMs 104
5.6 SOMs as Water Oxidation Catalysts 106
5.7 Conclusion 107
Acknowledgment 107
References 107
Chapter 6 Medicinal Applications of Metal Nanoparticles 113
6.1 Overview 113
6.2 Introduction and Background 113
6.2.1 History of Medicinal Use of Metals, Metal Ions, and Complexes 115
6.2.2 Nanotechnology and Nanomedicine 116
6.2.3 Application of Disease?Specific Nanomedicine 117
6.2.4 Importance of Metal Nanoparticles in Biology 117
6.3 Biomedical Applications of Metal Nanoparticles 118
6.3.1 Delivery of Biomolecules Using Metal Nanoparticles 119
6.3.1.1 Drug Delivery 119
6.3.1.2 Nucleic Acid Delivery 124
6.3.1.3 Immunological Molecule Delivery 125
6.3.2 Anticancer Activities of Metal Nanoparticles 126
6.3.3 Antiangiogenic Therapy Using Metal Nanoparticles 128
6.3.4 Proangiogenic Properties of Metal Nanoparticles 129
6.3.5 Metal Nanoparticles in Bioimaging 131
6.3.6 Biosensing Applications of Metal Nanoparticles 132
6.3.7 Antimicrobial Activity of Metal Nanoparticles 134
6.3.8 Metal Nanoparticles in Neurodegenerative Diseases 136
6.3.9 Metal Nanoparticles in Tissue Engineering 138
6.3.10 Metal Nanoparticles in Diabetes 138
6.3.11 Metal Nanoparticles for Retinal Disorder 139
6.3.12 Anti?Inflammatory Effects of Metal Nanoparticles 139
6.3.13 Biologically Synthesized Nanoparticles for Biomedical Applications 140
6.4 Pharmacokinetics of Metal Nanoparticles 141
6.5 Status of Metal Nanoparticles in Clinical Study 143
6.6 Future Prospect of Metal Nanoparticles in Medicine 144
Acknowledgment 145
References 147
Chapter 7 Metal Nanoparticles in Nanomedicine: Advantages and Scope 167
7.1 Introduction 167
7.1.1 Therapeutic Use of Metals: Historical Perspective 167
7.1.2 Nanomedicines and Metals 168
7.2 Advantages Associated with Metal Nanosystems 169
7.2.1 Metals as Nanosystems 170
7.2.1.1 Small Size and Large Surface Area?to?Volume Ratio 170
7.2.1.2 Shape and Morphology Dependence 171
7.2.2 Varieties of Metal Nanoparticles, Synthesis, and Fabrication Techniques 171
7.2.3 Inertness, Biocompatibility, and Ease of Surface Modifications 172
7.2.4 Optical Properties: Localized Surface Plasmon Resonance (LSPR) 174
7.2.5 Large Scattering and Absorption Cross Sections and Photothermal Effects 178
7.2.6 Enhanced Local Electromagnetic Field: Surface?Enhanced Spectroscopies 179
7.3 Applications and Scope 181
7.3.1 Targeted Drug Delivery and Controlled Release 181
7.3.2 Photothermal and Photodynamic Therapies and Cancer Treatment 185
7.3.3 Antimicrobial and Wound Healing Effects 187
7.3.4 Clinical Diagnostics 189
7.3.4.1 Medical Imaging 190
7.4 Concluding Remarks 197
Acknowledgments 197
References 197
Chapter 8 Applications of Metal Nanoparticles in Medicine/Metal Nanoparticles as Anticancer Agents 215
8.1 Advantages of Metal Nanoparticles 215
8.1.1 Stability and Homogeneity 215
8.1.2 Luminescence Property 216
8.1.3 Biocompatibility 216
8.1.4 Metabolic Pathways 216
8.2 Metal Nanoparticles as Anticancer Agents 217
8.3 Gold Nanoparticles 217
8.3.1 AuNPs as Therapeutic Agents 218
8.3.1.1 AuNPs in Plasmonic Photothermal Therapy 218
8.3.1.2 AuNPs in Photodynamic Therapy 219
8.3.1.3 AuNPs as a Therapeutic Agent 219
8.3.2 AuNPs as Drug Carriers 220
8.3.2.1 Targeted Delivery of Anticancer Drugs 220
8.3.2.2 Delivery of Genes 221
8.3.3 AuNPs in Cancer Imaging 221
8.4 Silver Nanoparticles (AgNPs) 222
8.4.1 Synthesis of AgNPs 222
8.4.1.1 Chemical Methods 222
8.4.1.2 Physical Methods 222
8.4.1.3 Biological Methods 222
8.4.2 AgNPs as Inhibitor in Chemotherapy 223
8.4.2.1 AgNPs as Promising Inhibitor Against Tumor 223
8.4.3 AgNPs as Drug Carrier 224
8.4.4 AgNPs in Cellular Imaging and Clinic Diagnostics 225
8.4.5 Cytotoxicity of AgNPs 225
8.5 Copper Nanoparticles 226
8.5.1 Synthesis of CuNPs 226
8.5.2 Antibacterial Activity 226
8.5.3 Anticancer Activity 226
8.5.4 Molecular Imaging 227
8.5.5 Drug Carrier 228
8.6 Conclusion 229
Acknowledgments 229
References 229
Chapter 9 Noble Metal Nanoparticles and Their Antimicrobial Properties 237
9.1 Introduction 237
9.2 Synthesis of Antibacterial Noble Metal Nanoparticles 237
9.2.1 Physical Methods 237
9.2.2 Chemical Methods 238
9.2.3 Green Synthesis Methods 239
9.3 Antibacterial Nanomaterials and Their Antibacterial Mechanism 239
9.3.1 Mechanisms of Nanoparticles Antibacterial Activity 240
9.4 Concluding Remarks and Future Outlook 241
References 242
Chapter 10 Metal Nanoparticles and Their Toxicity 249
10.1 Introduction to Metal Nanoparticles Toxicity 249
10.2 Metal Nanoparticle Internalization and Biodistribution 250
10.3 Physicochemical Properties of Metal Nanoparticles 252
10.4 Nanoparticle Size and Toxicity 253
10.4.1 Size and Uniformity of Metal Nanoparticles 253
10.4.2 Nanoparticle Size?Dependent Toxicity 253
10.5 Nanoparticle Composition and Toxicity 256
10.5.1 Nanoparticles Composition 256
10.5.2 Comparative Toxicity of Metal Nanoparticles 258
10.5.3 Toxicity of Silver Nanoparticles 261
10.5.4 Toxicity of Metal Oxides 261
10.5.4.1 Titanium Dioxide Nanoparticles Toxicity 261
10.5.4.2 Zinc Oxide Nanoparticles Toxicity 262
10.5.4.3 Copper Oxide Nanoparticle Toxicity 262
10.5.4.4 Cerium Oxide Nanoparticles Toxicity 262
10.6 Nanoparticle Morphology and Toxicity 263
10.6.1 Nanoparticles Morphology 263
10.6.2 Nanoparticle Morphology?Dependent Toxicity 264
10.7 Nanoparticle Crystalline Structure and Toxicity 266
10.7.1 Nanoparticle Crystalline Structure 266
10.7.2 Crystalline Structure?Dependent Toxicity 267
10.8 Nanoparticle Surface and Toxicity 267
10.8.1 Hydrophobicity and Hydrophilicity 267
10.8.2 Catalytic Activity 268
10.8.3 Surface Functionalization?Dependent Toxicity 268
10.8.4 Surface Charge?Dependent Toxicity 269
10.9 Nanoparticle Magnetism and Toxicity 269
10.9.1 Magnetism of Nanoparticles Magnetic in Bulk Form 269
10.9.2 Magnetism of Nanoparticles Nonmagnetic in Bulk Form (Au, Pt, Pd) 273
10.9.3 Magnetic Nanoparticles Toxicity 273
10.9.3.1 Iron Oxide Nanoparticles Toxicity 274
10.9.3.2 Cobalt and Nickel Compounds Nanoparticles Toxicity 274
10.9.4 Gold and Platinum Nanoparticle Toxicity 275
10.9.4.1 Gold Nanoparticles Toxicity 275
10.9.4.2 Platinum Nanoparticle Toxicity 275
10.10 Interaction of Nanoparticles Within Organisms 276
10.10.1 Formation of Protein Corona 276
10.10.2 Metal Nanoparticle Uptake by Cells 277
10.10.3 Nanoparticles Crossing the Placental Barrier 279
10.10.4 Nanoparticles Association to Cardiovascular Diseases 279
10.10.5 Central Nervous System Interaction with Nanoparticles 282
10.10.6 Immune System Interaction with Nanoparticles 282
10.10.7 Liver, Kidneys, and Other Organ Interaction with Nanoparticles 283
10.11 Other Novel Properties of Metal Nanoparticles 284
10.11.1 Optical Properties 284
10.11.2 Melting Temperature 286
10.12 Conclusions 288
References 288
Index 307
EULA 313
Erscheint lt. Verlag | 3.1.2018 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Schlagworte | Anorganische Chemie • Chemie • Chemistry • Industrial Chemistry • Inorganic Chemistry • Nanomaterial • Nanomaterialien • nanomaterials • Nanotechnologie • nanotechnology • Pharmaceutical & Medicinal Chemistry • Pharmazeutische Chemie • Pharmazeutische u. Medizinische Chemie • Technische u. Industrielle Chemie |
ISBN-10 | 3-527-80706-3 / 3527807063 |
ISBN-13 | 978-3-527-80706-2 / 9783527807062 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 6,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich