Geometric Theory of Dynamical Systems
Springer-Verlag New York Inc.
978-0-387-90668-3 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.
1 Differentiable Manifolds and Vector Fields.- 0 Calculus in ?n and Differentiable Manifolds.- 1 Vector Fields on Manifolds.- 2 The Topology of the Space of Cr Maps.- 3 Transversality.- 4 Structural Stability.- 2 Local Stability.- 1 The Tubular Flow Theorem.- 2 Linear Vector Fields.- 3 Singularities and Hyperbolic Fixed Points.- 4 Local Stability.- 5 Local Classification.- 6 Invariant Manifolds.- 7 The ?-lemma (Inclination Lemma). Geometrical Proof of Local Stability.- 3 The Kupka-Smale Theorem.- 1 The Poincare Map.- 2 Genericity of Vector Fields Whose Closed Orbits Are Hyperbolic.- 3 Transversality of the Invariant Manifolds.- 4 Genericity and Stability of Morse-Smale Vector Fields.- 1 Morse-Smale Vector Fields; Structural Stability.- 2 Density of Morse-Smale Vector Fields on Orientable Surfaces.- 3 Generalizations.- 4 General Comments on Structural Stability. Other Topics.- Appendix: Rotation Number and Cherry Flows.- References.
Übersetzer | A. K. Manning |
---|---|
Zusatzinfo | biography |
Verlagsort | New York, NY |
Sprache | englisch |
Gewicht | 475 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie | |
ISBN-10 | 0-387-90668-1 / 0387906681 |
ISBN-13 | 978-0-387-90668-3 / 9780387906683 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich