High Performance Polymers and Their Nanocomposites
Wiley-Scrivener (Verlag)
978-1-119-36365-1 (ISBN)
Visakh P.M. (MSc, MPhil, PhD) is a prolific editor with more than 25 books already published. He is working as an Assistant Professor in Tusur University, Tomsk, Russia. He obtained his PhD, MPhil and MSc degrees from the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India. He has an h-index of 14 for his journal publications. His research interests include polymer sciences, polymer nanocomposites, bio-nanocomposites, rubber-based nanocomposites and fire-retardant polymers. Artem Semkin is currently working as a scientist in the Department of Microwave and Quantum Radio Engineering, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia. He obtained his PhD from Tomsk State University of Control Systems and Radioelectronics and has published more than 80 publications with an h-index of 6. His areas of research include polymer sciences, photopolymers, liquid crystals, photopolymeric and liquid crystalline compositions.
Preface xv
1 High-Performance Polymer Nanocomposites and Their Applications: State of Art and New Challenges 1
PM Visakh
1.1 Liquid Crystal Polymers 1
1.2 Polyamide 4, 6, (PA4,6) 3
1.3 Polyacrylamide 4
1.4 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-Imide) 5
1.5 Thermoplastic Polyimide 5
1.6 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) 7
1.7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties 9
1.8 Poly(ethylene Terephthalate)—PET and Poly(ethylene Naphthalate)—PEN 11
1.9 High-Performance Oil Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxydized Natural Rubber (ENR) 14
1.10 High Performance Unsaturated Polyester/f-MWCNTs Nanocomposites Induced by F- Graphene Nanoplatelets 15
2 Liquid Crystal Polymers 27
Andreea Irina Barzic, Raluca Marinica Albu and Luminita Ioana Buruiana
2.1 Introduction and History 27
2.2 Polymerization 29
2.2.1 Synthesis of Lyotropic LC Polymers 30
2.2.2 Synthesis of Thermotropic LC Polymers 31
2.3 Properties 32
2.3.1 Rheology 32
2.3.2 Dielectric Behavior 35
2.3.3 Magnetic Properties 36
2.3.4 Mechanical Properties 36
2.3.5 Phases and Morphology 39
2.4 Processing 41
2.4.1 Injection Molding 41
2.4.2 Extrusion 42
2.4.3 Free Surface Flow 43
2.4.4 LC Polymer Fiber Spinning 44
2.5 Blends Based on Liquid Crystal Ppolymers 44
2.6 Composites of Liquid Crystal Polymers 46
2.7 Applications 49
2.7.1 LC Polymers as Optoelectronic Materials 49
2.7.2 Liquid Crystalline Polymers in Displays 50
2.7.3 Sensors and Actuators 51
2.8 Environmental Impact and Recycling 52
2.9 Concluding Remarks and Future Trends 54
Acknowledgment 54
3 Polyamide 4,6, (PA4,6) 59
Emel Kuram and Zeynep Munteha Sahin
3.1 Introduction and History 59
3.2 Polymerization and Fabrication 60
3.3 Properties 69
3.4 Chemical Stability 72
3.5 Compounding and Special Additives 72
3.6 Processing 73
3.7 Applications 83
3.8 Blends of Polyamide 4,6, (PA4,6) 84
3.9 Composites of Polyamide 4,6, (PA4,6) 89
3.10 Nanocomposites of Polyamide 4,6, (PA4,6) 90
3.11 Environmental Impact and Recycling 94
3.12 Conclusions 98
4 Polyacrylamide (PAM) 105
Małgorzata Wiśniewska
4.1 Introduction and History 105
4.2 Polymerization and Fabrication 107
4.3 Properties 110
4.4 Chemical Stability 111
4.5 Compounding and Special Additives 112
4.6 Processing 113
4.7 Applications 114
4.8 Blends of Polyacrylamide 116
4.9 Composites of Polyacrylamide 118
4.10 Nanocomposites of Polyacrylamide 119
4.11 Environmental Impact and Recycling 121
4.12 Conclusions 122
5 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-imide) 133
Dhorali Gnanasekaran
5.1 Introduction 134
5.2 Experimental 136
5.3 Results and Discussion 138
5.4 Conclusions 145
6 Thermoplastic Polyimide (TPI) 149
Xiantao Feng and Jialei Liu
6.1 Introduction and History 149
6.2 Polymerization and Fabrication 150
6.2.1 Thermoplastic Polyimides Based on BEPA 150
6.2.2 Thermoplastic Polyimides based on PMDA 153
6.2.3 Thermoplastic Polyimides Based on BTDA 154
6.2.4 Thermoplastic Polyimides Based on ODPA 157
6.2.5 Thermoplastic Polyimides Based on BPDA 157
6.2.6 Thermoplastic Copolyimides 158
6.3 Properties 160
6.3.1 TPI Based on BEPA 160
6.3.2 Thermoplastic Polyimides based on PMDA 163
6.3.3 TPI Based on ODPA 163
6.3.4 Thermoplastic Polyimides Based on BPDA 168
6.3.5 Thermoplastic Copolyimides 170
6.4 Chemical Stability 170
6.4.1 Hydrolytic Stability 170
6.4.2 Oxidative Stability 174
6.5 Compounding 175
6.5.1 Chloromethylation 175
6.5.2 Sulfonation 178
6.5.3 Phosphorylation 178
6.5.4 Bromination 178
6.5.5 Arylation 181
6.6 Processing 181
6.6.1 Injection Molding 181
6.6.2 Compression Molding 182
6.6.3 Extrusion Molding 184
6.6.4 Coating 184
6.6.5 Spinning [40] 186
6.7 Applications 186
6.7.1 Membranes 186
6.7.2 Adhesives 188
6.7.3 Composites 189
6.7.3.1 Skybond 190
6.7.4 Engineering Plastics 190
6.7.4.1 VESPEL Plastics 190
6.7.4.2 ULTEM Plastics [48, 49] 191
6.7.4.3 AURUM Plastics [50] 192
6.7.4.3 Ratem Plastics [51] 192
6.8 Blends of Thermoplastic Polyimide (TPI) 193
6.8.1 TPI Blends with TPI 193
6.8.2 Polyamic Acid Blending 195
6.9 Composites of Thermoplastic Polyimide (TPI) 196
6.9.1 LaRC Composites 197
6.9.2 Skybond 202
6.9.3 PAI Polyamide–Imide Composites 205
6.10 Nanocomposites of Thermoplastic Polyimide (TPI) 208
6.10.1 TPI/silver Nanocomposite 208
6.10.2 TPI/Fe-FeO Nanocomposite 210
6.10.3 TPI/Carbon Nanocomposites 211
6.10.4 TPI/CF/TiO2 Nanocomposite 214
6.11 Environmental Impact and Recycling 214
6.12 Conclusions 215
7 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) – A Review 221
E. Dhanumalayan and Girish M Joshi
7.1 Introduction 221
7.2 Properties of PTFE 223
7.2.1 Physical Properties of PTFE 223
Surface Properties 223
7.2.2 Tribological Property of PTFE Surface 224
7.2.3 Mechanical Properties of PTFE 226
7.2.4 Chemical Properties of PTFE 228
Solubility of PTFE 228
7.2.5 Thermal Properties of PTFE 228
Thermal transport property of PTFE composites 229
7.2.6 Electrical Properties of PTFE 229
Dielectric property of PTFE 229
7.2.7 Optical and Spectral Properties of PTFE 230
7.3 Processing and Casting Techniques of PTFE 231
7.3.1 Casting of PTFE by Melt-Processing Method 232
7.3.2 Sintering of PTFE 233
7.3.3 Molding Techniques of PTFE 233
7.3.4 Casting of PTFE by Extrusion 236
7.3.5 Solution Blending of PTFE 237
7.3.6 PTFE Coating Methods 238
7.4 Applications of PTFE in Various Fields 238
7.4.1 PTFE in Automotive Industries 238
7.4.2 PTFE in Petrochemical and Power Industries 239
7.4.3 PTFE in Aerospace Industries 240
7.4.4 PTFE in Food Processing Industries 241
7.4.5 PTFE Applications in Chemical Industries 242
7.4.6 PTFE in Biomedical and Pharmaceutical Applications 242
7.4.7 PTFE in Electrical Applications 243
7.4.8 PTFE for Defense Applications 243
7.4.9 Application of PTFE Ice-Phobic Surfaces 243
7.4.10 Application of PTFE in Water and Air Purification Process 244
7.5 Different Forms of PTFE 244
7.5.1 Fine Powder of PTFE for Foaming Applications 244
7.5.2 Granular Form of PTFE 245
7.5.3 Resin Form of PTFE 245
7.5.4 Paste Form of PTFE 245
7.5.5 Emulsion Form of PTFE 246
7.6 Various Grades of PTFE 246
7.6.1 Carbon-Reinforced PTFE 246
7.6.2 Glass Fiber-Reinforced PTFE 247
7.6.3 Bronze-Filled PTFE Composites 247
7.6.4 Graphite Filled PTFE 248
7.6.5 Molybdenum Disulfide (MoS2)-Filled PTFE 248
7.7 Nanocomposites of PTFE 248
7.8 Future Prospects of PTFE 254
7.9 Conclusion 256
8 Advances in High-Performance Polymers Bearing Phthalazinone Moieties 267
Jinyan Wang, Cheng Liu, Shouhai Zhang and Xigao Jian
8.1 Introduction 268
8.2 A New Mmonomer: 1, 2-Dihydro-4-(4-Hydroxyphenyl)-1-(2H)-Phthalazinone 269
8.3 Synthesis and Properties of Phthalazinone-Containing Polyarylethers 271
8.3.1 Poly(phthalazinone Ether Sulfone Ketone)s (PPESKs) 271
8.3.2 Poly(phthalazinone Ether Ketone Ketone) (PPEKK) and Its Copolymers 274
8.3.3 Poly(phthalazinone Ether Nitrile Sulfone Ketone)s (PPENSKs) 275
8.3.4 Poly(aryl Ether) Containing Aryl-S-Triazine and Phthalazinone Moieties 279
8.4 Polyamides and Polyimides Containing Phthalazinone Moieties 285
8.5 Phthalazinone-Containing Polyarylates 291
8.6 Phthalazinone-Containing Ppolybenzimidazole 292
8.7 Conclusions and Prospects 293
Acknowledgments 294
9 Poly(ethylene terephthalate)—PET and Poly(ethylene naphthalate)—PEN 301
Luigi Sorrentino, Marco D’ Auria and Eugenio Amendola
9.1 Introduction 302
9.2 Synthesis of PET and PEN 304
9.2.1 PET Production 312
9.3 Processing of Neat Polymers 313
9.3.1 Materials Feeding 315
9.3.2 Melting and Compounding 316
9.3.3 Venting 316
9.3.4 Metering 316
9.3.5 Temperature Managing 317
9.3.6 Die Forming and Post-Die Treatments 317
9.3.7 Tandem Extruders Cconfiguration 317
9.4 Nanocomposites 318
9.4.1 Isodimensional Nanoparticles 319
9.4.2 Clay Nanoparticles 321
9.4.3 Carbon-Based Nanoparticles 324
9.5 Nanocomposites Production Processes 325
9.5.1 In Situ Polymerization 326
9.5.2 Solution Intercalation (Or Solution Blending) 328
9.5.3 Direct Mixing 329
9.5.4 Melt Compounding (High Shear Mixing) 330
9.5.5 Three Roll Milling 332
9.5.6 Dispersion Aids (Ultrasounds) 333
9.5.7 Solid-State Shear Processing 335
9.5.8 Combined Approaches 336
9.6 Structural and Functional Properties 336
9.6.1 Mechanical Behavior 337
9.6.2 Thermal Resistance 340
9.6.3 Transport Properties 341
9.6.4 Electrical Conductivity 343
9.6.5 Rheological Properties 346
10 High-Performance Oil-Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxidized Natural Rubber (ENR) 361
D.K. Setua and G.B. Nando
10.1 Introduction 362
10.2 Experimental 365
10.3 Result and Discussion 367
10.3.1 Optimization of Curing System for the ENR/EPDM Blends 367
10.3.2 Optimization of Blend Ratio for the ENR/EPDM Blends 369
10.3.3 Optimization of MAH Concentration for Maleation of EPDM 369
10.3.4 Characterization of ENR-MA-G-EPDM Blends 373
10.3.5 Optimization of Processing Temperature for ENR-MA-G-EPDM Blends 375
10.3.6 Compatibility Characteristics of ENR-MA-G-EPDM Blends 375
10.3.6.1 Ultrasonic Velocity Measurements in Solution 375
10.3.6.2 Thermomechanical Analysis (TMA) 377
10.3.6.3 Scanning Electron Microscopy (SEM) Studies 378
10.3.7 Evaluation of the Mechanical Properties of Individual Rubbers and Blends 379
10.3.7.1 Stress–Strain Properties 379
10.3.7.2 Determination of Hardness 382
10.3.7.3 Oil Swelling Studies 383
10.3.7.4 Aging Studies 385
10.3.7.5 Thermogravimetric Analysis (TGA) 386
10.3.8 Effect of Addition of Carbon Black in ENR/MA-G-EPDM Blend 388
10.4 Summary and Conclusions 388
11 High-Performance Unsaturated Polyester/f-MWCNTs Nanocomposites Induced by f-Graphene Nanoplatelets 393
Shivkumari Panda, Dibakar Behera, Tapan Kumar Bastia and Prasant Rath
11.1 Introduction and History 394
11.1.1 Polymerization 394
11.1.2 Fabrication 395
11.1.2.1 Hand Lay-Up 395
11.1.2.2 Spray Lay-Up 397
11.1.2.3 Compression Molding 397
11.1.2.4 Filament Winding 398
11.1.3 Chemical Stability of UPE 398
11.1.4 Compounding and Special Additives 398
11.1.5 Applications 401
11.2 Nanocomposites of UPE
11.2.1 Experimental Details 403
11.2.1.1 Materials 403
11.2.1.2 Methods 403
11.2.2 Instruments and Measurements 405
11.2.2.1 Fourier Transform Infrared (FTIR) Spectroscopy 405
11.2.2.2 Scanning Electron Microscopy (SEM) 405
11.2.2.3 Transmission Electron Microscope (TEM) 406
11.2.2.4 Contact Angle Determination 406
11.2.2.5 Dynamic Mechanical Analysis 406
11.2.2.6 Impact Testing 406
11.2.2.7 Water Absorption Capacity Determination 406
11.2.3 Results and Discussion 407
11.2.3.1 FTIR Analysis 407
11.2.3.2 SEM Analysis 408
11.2.3.3 TEM Analysis 410
11.2.3.4 Contact Angle 411
11.2.3.5 Thermomechanical Properties of UPE/Single Filler and UPE/Hybrid Filler Nanocomposites 412
11.2.3.6 Water Absorption Capacity 414
Erscheinungsdatum | 18.12.2018 |
---|---|
Sprache | englisch |
Maße | 10 x 10 mm |
Gewicht | 454 g |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Technik ► Maschinenbau | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-119-36365-9 / 1119363659 |
ISBN-13 | 978-1-119-36365-1 / 9781119363651 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich