Insect Biodiversity
Wiley-Blackwell (Verlag)
978-1-118-94557-5 (ISBN)
Volume Two of Insect Biodiversity: Science and Society presents an entirely new, companion volume of a comprehensive resource for the most current research on the influence insects have on humankind and on our endangered environment. With contributions from leading researchers and scholars on the topic, the text explores relevant topics including biodiversity in different habitats and regions, taxonomic groups, and perspectives.
Volume Two offers coverage of insect biodiversity in regional settings, such as the Arctic and Asia, and in particular habitats including crops, caves, and islands. The authors also include information on historical, cultural, technical, and climatic perspectives of insect biodiversity.
This book explores the wide variety of insect species and their evolutionary relationships. Case studies offer assessments on how insect biodiversity can help meet the needs of a rapidly expanding human population, and examine the consequences that an increased loss of insect species will have on the world. This important text:
Offers the most up-to-date information on the important topic of insect biodiversity
Explores vital topics such as the impact on insect biodiversity through habitat loss and degradation and climate change
With its companion Volume I, presents current information on the biodiversity of all insect orders
Contains reviews of insect biodiversity in culture and art, in the fossil record, and in agricultural systems
Includes scientific approaches and methods for the study of insect biodiversity
The book offers scientists, academics, professionals, and students a guide for a better understanding of the biology and ecology of insects, highlighting the need to sustainably manage ecosystems in an ever-changing global environment.
ROBERT G. FOOTTIT is a research scientist specializing in the taxonomy of aphids and related groups, with the Canadian National Collection of Insects and Agriculture and Agri-Food Canada. His research interests include the use of morphological and molecular approaches in the study of aphid species and populations. PETER H. ADLER is a professor of entomology at Clemson University, where he holds a teaching and research appointment, specializing in the behavior, ecology, genetics, and systematics of insects, particularly butterflies and medically important flies.
List of Contributors xxiii
Foreword xxix
Preface, Volume II xxxiii
Acknowledgments xxxv
1 Introduction – A Brief History of Revolutions in the Study of Insect Biodiversity 1
Peter H. Adler and Robert G. Foottit
1.1 Discovery 1
1.2 Conceptual Development 5
1.3 Information Management 6
1.4 Conclusions 7
Acknowledgments 8
References 8
Part I Habitats and Regions 13
2 Insect Biodiversity in the Arctic 15
Ian D. Hodkinson
2.1 Documenting Biodiversity – Traditional Taxonomy Versus DNA Barcoding 17
2.2 Insect Species Diversity in the Arctic 18
2.2.1 Composition of the Arctic Insect Fauna 18
2.2.2 Species Richness Trends Along Latitudinal Gradients 25
2.2.3 Geographical and Regional Variations in Species Richness 27
2.2.4 Diversity Oases Within the Arctic 28
2.3 Historical Insect Biodiversity in the Arctic – the Time Perspective 29
2.3.1 Nunataks and Glacial Refugia as Generators of Biodiversity 30
2.3.2 Endemism 31
2.4 Biodiversity on the Landscape Scale 32
2.4.1 Variation in Biodiversity on a Landscape Scale 32
2.4.2 Local Effects on Biodiversity – Predation and Natural Disturbance 34
2.5 Important Characteristics of Arctic Insect Biodiversity 35
2.5.1 Specialist Versus Generalist Species 35
2.5.2 Life‐History Adaptation 35
2.5.3 Genetic Diversity Within Species and Groups 36
2.5.4 Reproductive Variation and Parthenogenesis 36
2.5.5 A Diversity of Adaptations for Maximizing Heat Absorption 37
2.6 Cold Tolerance – a Diversity of Adaptations 38
2.6.1 Brachyptery and Wing Polymorphism 39
2.7 Dispersal, Immigration, and Biodiversity 39
2.8 Pollinator Networks and Pollinator Biodiversity 40
2.9 A Biodiversity Paradise for Parasites? 41
2.10 Biodiversity and the Changing Arctic Climate 42
References 44
3 Insect Biodiversity in Indochina: A Window into the Riches of the Oriental Region 59
Seunghwan Lee and Ram Keshari Duwal
3.1 Physical Geography and Climate 62
3.2 Features of Insect Biodiversity in the Lower Mekong Subregion 62
3.2.1 Blattodea 70
3.2.2 Coleoptera 70
3.2.3 Dermaptera 71
3.2.4 Diptera 72
3.2.5 Embiodea 72
3.2.6 Ephemeroptera 72
3.2.7 Hemiptera 72
3.2.8 Hymenoptera 72
3.2.9 “Isoptera” 72
3.2.10 Lepidoptera 72
3.2.11 Mantodea 73
3.2.12 Mecoptera 73
3.2.13 Megaloptera 73
3.2.14 Microcoryphia and Zygentoma 73
3.2.15 Neuroptera 73
3.2.16 Notoptera (Grylloblattodea and Mantophasmatodea) 73
3.2.17 Odonata 73
3.2.18 Orthoptera 73
3.2.19 Phasmatodea 73
3.2.20 Phthiraptera 73
3.2.21 Plecoptera 74
3.2.22 Psocoptera 74
3.2.23 Raphidioptera 74
3.2.24 Siphonaptera 74
3.2.25 Strepsiptera 74
3.2.26 Thysanoptera 74
3.2.27 Trichoptera 74
3.2.28 Zoraptera 74
3.3 Insect Biodiversity and Society in Indochina 74
3.3.1 Entomophagy in the Lower Mekong Subregion 74
3.3.2 Research Initiatives 76
3.4 Conclusions 77
Acknowledgments 78
References 78
4 Biodiversity of Arthropods on Islands 81
Rosemary G. Gillespie and Kipling Will
4.1 What is an Island? 81
4.1.1 History of the Island 82
4.1.2 Degree of Isolation 84
4.1.3 Area of the Island 84
4.1.4 Age of the Island 85
4.2 Ecological Attributes of Islands 85
4.2.1 Species Diversity on Islands 85
4.2.2 Island Colonization 86
4.2.3 Factors Facilitating Establishment 86
4.2.4 Niche Preemption 86
4.2.5 Ecological Release 87
4.2.6 Networks of Ecological Interactions 87
4.3 Evolution on Islands 87
4.3.1 Anagenesis 87
4.3.2 Cladogenesis 87
4.3.3 Adaptive Radiation 88
4.3.4 Isolation, Hybridization, and Admixture 88
4.3.5 Parallel Evolution and Convergence 89
4.4 Evolution in Other Insular Environments 89
4.4.1 Mountaintops – Sky Islands 89
4.4.2 Caves 89
4.4.3 Desert Dunes and Salt Lakes 89
4.4.4 Habitat Fragments 90
4.5 Characteristics of Island Biodiversity 90
4.5.1 Disharmony 90
4.5.2 Endemism 91
4.5.3 Loss of Dispersal Ability and Flightlessness 91
4.5.4 Innovations 91
4.5.5 Size 92
4.5.6 Reproductive Shifts 92
4.6 Conservation 92
4.6.1 Taxonomic Impediments 93
4.6.2 Restricted Ranges and Small Population Sizes 93
4.6.3 Abiotic Factors 93
4.6.4 Invasive Species 94
4.7 Conclusion 94
References 94
5 Beneficial Insects in Agriculture: Enhancement of Biodiversity and Ecosystem Services 105
Matthew S. Jones and William E. Snyder
5.1 Components of Biodiversity: Species Richness, Species Evenness, and Species Identity 106
5.2 Why Does Insect Biodiversity Matter to Agriculture? 106
5.2.1 Complementarity 107
5.2.1.1 Temporal Complementarity 107
5.2.1.2 Spatial Complementarity 108
5.2.1.3 Behavioral Complementarity 109
5.2.2 Identity Effects in Pollinator, Predator, and Detritivore Communities 110
5.2.3 Disruptive Species Interactions in Diverse Communities 111
5.3 Degradation of Biodiversity Through Agricultural Intensification, and Its Reversal 112
5.4 Restoring Biodiversity to Agroecosystems 112
5.4.1 Restoring Key Resources 112
5.4.2 Optimizing Use of Pesticides 113
5.4.3 Diversifying Farming Landscapes at Larger Scales 113
5.5 Conclusions and Recommendations 115
5.5.1 Clarify Mechanisms Leading to Biodiversity Effects 115
5.5.2 Consider Biodiversity Effects That Span Multiple Ecosystem Services 115
5.5.3 Better Link Management Practices to Beneficial Biodiversity Effects 115
5.5.4 Rank the Relative Importance of Habitat Loss Versus Agrochemical Use 116
5.5.5 Elucidate Strategies That Facilitate Transition from Current Agricultural Production Practices to Those That Are Sustainable and Provide Improved Ecosystem
Services 116
5.6 Summary 116
Acknowledgments 117
References 117
6 Insects in Caves 123
David C. Culver and Tanja Pipan
6.1 The Story of Leptodirus hochenwartii 123
6.2 The Variety of Subterranean Spaces 124
6.2.1 Overview 124
6.2.2 Caves 125
6.2.3 Soil and Interstitial Habitats 126
6.2.4 Shallow Subterranean Habitats 127
6.2.4.1 Epikarst 128
6.2.4.2 Milieu Souterrain Superficiel 128
6.2.4.3 Calcrete Aquifers 128
6.2.4.4 Unifying Features of Shallow Subterranean Habitats 130
6.3 Ecological Roles of Insects in Caves 133
6.3.1 Relative Importance of Subterranean Habitats in the Ecology of Different Insects 133
6.3.2 Trophic Roles 134
6.4 Morphological and Life‐History Adaptations of Insects to Subterranean Life 134
6.5 Probable Modes of Successful Colonization of Subterranean Space 138
6.5.1 Initial Colonization 140
6.5.2 Successful Colonization 140
6.5.3 Allopatric Versus Parapatric Speciation 141
6.5.4 Subterranean Dispersal 142
6.6 Taxonomic and Geographic Patterns of Subterranean Insect Biodiversity 142
6.6.1 Geographic Patterns 142
6.6.2 Taxonomic Review of Troglobiotic Insects 143
6.6.2.1 Collembola 144
6.6.2.2 Diplura 146
6.6.2.3 Coleoptera 146
6.6.2.4 Fulgoromorpha 147
6.7 Human Utility and Protection of Cave Insects 147
References 147
Part II Taxa 153
7 Biodiversity of the Thysanurans (Microcoryphia and Zygentoma) 155
Luis F. Mendes
7.1 Paleontological Data 159
7.2 Parasitism 167
7.2.1 Unicellular Parasites 167
7.2.2 Nematoda 167
7.2.3 Acarids 167
7.2.4 Strepsiptera 167
7.2.5 Fungi 167
7.3 Predation 168
7.4 Order Microcoryphia (= Archaeognatha) 168
7.4.1 Characterization 168
7.4.2 Bionomics 172
7.4.3 Taxonomy 173
7.4.4 Identification Key for Families, Subfamilies, and Paleoforms of Microcoryphia 174
7.5 Order Zygentoma (= Thysanura Sensu Stricto) 175
7.5.1 Characterization 175
7.5.2 Bionomics 179
7.5.3 Taxonomy 180
7.5.4 Identification Key for Families and Subfamilies of Zygentoma 181
7.6 Genetic Studies of Thysanurans 183
7.7 Thysanurans and Humans 184
7.8 Geographic Distribution of the Thysanurans 185
References 187
8 Biodiversity of Zoraptera and Their Little‐Known Biology 199
Jae C. Choe
8.1 Morphology 201
8.2 Life History and Ecology 204
8.3 Reproduction 208
8.4 Phylogenetic Position – “The Zoraptera Problem” 210
8.5 Conclusion 211
Acknowledgments 212
References 212
9 Biodiversity of Embiodea 219
Janice S. Edgerly
9.1 Diversity in Habitat and Silk 223
9.2 The Promise of Silk‐Like Biomaterials and Emerging Lessons from Webspinners 228
9.3 Social Behavior 229
9.4 Families of Embiodea 231
9.4.1 Andesembiidae 231
9.4.2 Anisembiidae 232
9.4.3 Archembiidae 233
9.4.4 Australembiidae 234
9.4.5 Clothodidae 234
9.4.6 Embiidae 235
9.4.7 Embonychidae 236
9.4.8 Notoligotomidae 236
9.4.9 Oligotomidae 236
9.4.10 Paedembiidae 238
9.4.11 Ptilocerembiidae 238
9.4.12 Scelembiidae 238
9.4.13 Teratembiidae 239
9.5 Webspinners of the Fossil Record 239
9.6 Conclusion 239
References 240
10 Biodiversity of Orthoptera 245
Hojun Song
10.1 Taxonomic Classification and Phylogeny 245
10.2 Diversity and Distribution 246
10.3 Morphological and Biological Diversity 250
10.4 Societal Importance 253
10.5 Overview of Taxa 254
10.5.1 Suborder Ensifera 254
10.5.1.1 Superfamily Grylloidea 255
10.5.1.2 Superfamily Gryllotalpoidea 255
10.5.1.3 Superfamily Schizodactyloidea 259
10.5.1.4 Superfamily Rhaphidophoroidea 260
10.5.1.5 Superfamily Hagloidea 260
10.5.1.6 Superfamily Stenopelmatoidea 260
10.5.1.7 Superfamily Tettigonioidea 261
10.5.2 Suborder Caelifera 262
10.5.2.1 Superfamily Tridactyloidea 263
10.5.2.2 Superfamily Tetrigoidea 263
10.5.2.3 Superfamily Eumastacoidea 265
10.5.2.4 Superfamily Proscopioidea 266
10.5.3.5 Superfamily Tanaoceroidea 266
10.5.3.6 Superfamily Trigonopterygoidea 267
10.5.3.7 Superfamily Pneumoroidea 267
10.5.3.8 Superfamily Pyrgomorphoidea 267
10.5.3.9 Superfamily Acridoidea 268
Acknowledgments 271
References 271
11 Biodiversity of Phasmatodea 281
Sven Bradler and Thomas R. Buckley
11.1 Phasmatodean Phylogeny 286
11.2 Overview of Taxa 288
11.2.1 Timema 289
11.2.2 Agathemera 290
11.2.3 Heteronemiinae 290
11.2.4 Aschiphasmatinae 290
11.2.5 Phylliinae – The True Leaf Insects 291
11.2.6 Heteropteryginae 292
11.2.7 Diapheromerinae 293
11.2.8 Pseudophasmatinae 294
11.2.9 Palophinae 294
11.2.10 The African Clade 295
11.2.11 Gratidiini 295
11.2.12 Clitumnini 296
11.2.13 Medaurini 296
11.2.14 Pharnaciini 296
11.2.15 Cladomorphinae 296
11.2.16 Stephanacridini 297
11.2.17 Lanceocercata – The “Marsupials” Among the Phasmatodea 297
11.2.18 Lonchodinae 299
11.2.19 Necrosciinae 300
11.3 The Phasmatodean Fossil Record 300
11.4 Phasmatodea as Research Tools 302
11.5 Importance to Human Society 304
References 304
12 Biodiversity of Dermaptera 315
Fabian Haas
12.1 Epizoic Dermaptera 315
12.2 Structure and Function 318
12.3 Locomotion 319
12.4 Distribution 319
12.5 Development and Reproduction 323
12.6 Behavior 323
12.6.1 Mating Behavior and Maternal Care 323
12.6.2 Defense 324
12.6.3 Feeding 324
12.7 Parasitism and Symbiosis 324
12.8 Fossils and Research History 324
12.9 Overview of Taxa 325
12.9.1 Lower Dermaptera 325
12.9.2 Higher Dermaptera 326
12.10 Societal and Scientific Importance 326
12.10.1 Plant Pests, Biological Control Agents, and General Nuisances 326
12.10.2 Medical, Veterinary, and Forensic Importance 326
12.10.3 Invasive Alien Species 327
12.10.4 Pollination and Other Ecological Services 327
12.10.5 Research Tools 327
12.10.6 Conservation – Vanishing Species 328
12.10.7 Cultural Legacy 328
Acknowledgments 328
References 328
13 Biodiversity of Grylloblattodea and Mantophasmatodea 335
Monika J. B. Eberhard, Sean D. Schoville and Klaus‐Dieter Klass
13.1 Grylloblattodea 336
13.1.1 Morphology and Biology 336
13.1.2 Overview of Taxa 341
13.2 Mantophasmatodea 343
13.2.1 Morphology and Biology 343
13.2.2 Overview of Taxa 346
13.2.2.1 Tanzaniophasmatidae 349
13.2.2.2 Mantophasmatidae 349
13.2.2.3 Tyrannophasma/Praedatophasma Clade 350
13.2.2.4 Austrophasmatidae 350
13.3 Fossil Record 351
13.4 Conclusions 352
Acknowledgments 353
References 353
14 Biodiversity of Blattodea – the Cockroaches and Termites 359
Marie Djernæs
14.1 Overview of Taxa 362
14.1.1 Superfamily Corydioidea 363
14.1.1.1 Family Corydiidae 363
14.1.1.2 Family Nocticolidae 365
14.1.2 Superfamily Blaberoidea 366
14.1.2.1 Family Ectobiidae 366
14.1.2.2 Family Blaberidae 368
14.1.3 Superfamily Blattoidea 369
14.1.3.1 Family Blattidae 369
14.1.3.2 Family Lamproblattidae 370
14.1.3.3 Family Tryonicidae 371
14.1.3.4 Family Anaplectidae 371
14.1.3.5 Family Cryptocercidae 371
14.1.3.6 Termites 371
14.2 Societal Importance 373
14.2.1 Cockroaches and Science 373
14.2.2 Cockroaches as Pests 374
14.2.3 Cockroaches as Food, Feed, and Medicine 375
14.2.4 Pet and Feeder Species 376
14.2.5 Ecological Importance 376
14.2.6 Conservation Status 377
References 377
15 Biodiversity of Mantodea 389
Frank Wieland and Gavin J. Svenson
15.1 Morphological and Biological Diversity 391
15.2 Phylogeny and Classification 396
15.2.1 Acanthopidae 396
15.2.2 Acontistidae 396
15.2.3 Amorphoscelidae 397
15.2.4 Angelidae 398
15.2.5 Chaeteessidae 398
15.2.6 Coptopterygidae 399
15.2.7 Empusidae 399
15.2.8 Epaphroditidae 399
15.2.9 Eremiaphilidae 400
15.2.10 Galinthiadidae 400
15.2.11 Hymenopodidae 401
15.2.12 Iridopterygidae 401
15.2.13 Liturgusidae 401
15.2.14 Mantidae 402
15.2.15 Mantoididae 402
15.2.16 Metallyticidae 403
15.2.17 Photinaidae 403
15.2.18 Stenophyllidae 404
15.2.19 Tarachodidae 404
15.2.20 Thespidae 404
15.2.21 Toxoderidae 405
15.2.22 Incertae Sedis 405
15.2.23 Suprafamilial Groups 405
15.2.23.1 Acanthopoidea 405
15.2.23.2 Artimantodea 405
15.2.23.3 Cernomantodea 406
15.2.23.4 Eumantodea 406
15.2.23.5 Mantidea 406
15.2.23.6 Mantoidea 406
15.2.23.7 Mantomorpha 406
15.2.23.8 Neomantodea 406
15.3 Morphological Convergence and Ecomorphs 406
15.4 Conclusions 407
References 407
16 Biodiversity of Psocoptera 417
Edward L. Mockford
16.1 Classification 418
16.2 Overview of the Psocoptera 422
16.2.1 Suborder Trogiomorpha 422
16.2.1.1 Infraorder Atropetae 423
16.2.1.2 Infraorder Psocatropetae 434
16.2.1.3 Infraorder Prionoglaridetae 434
16.2.2 Suborder Troctomorpha 434
16.2.2.1 Infraorder Nanopsocetae 434
16.2.2.2 Infraorder Amphientometae 436
16.2.2.3 Superfamily Amphientomoidea 436
16.2.2.4 Superfamily Electrentomoidea 437
16.2.3 Suborder Psocomorpha 438
16.2.3.1 Infraorder Archipsocetae 438
16.2.3.2 Infraorder Caeciliusetae 438
16.2.3.3 Infraorder Homilopsocidea 441
16.2.3.4 Infraorder Philotarsetae 443
16.2.3.5 Infraorder Epipsocetae 444
16.2.3.6 Infraorder Psocetae 445
16.3 Summary of Diversity of the Psocoptera and Predictions 447
16.4 The Importance to Humans of Psocopteran Biodiversity 448
Acknowledgments 448
References 449
17 Biodiversity of Ectoparasites: Lice (Phthiraptera) and Fleas (Siphonaptera) 457
Terry D. Galloway
17.1 Phthiraptera – The Parasitic Lice 458
17.2 Siphonaptera – The Fleas 465
17.3 Medical and Veterinary Importance 474
17.3.1 Lice 474
17.3.2 Fleas 475
17.4 Community Diversity of Lice and Fleas 477
17.5 Conservation of Lice and Fleas 478
Acknowledgments 479
References 479
18 Biodiversity of Thysanoptera 483
Laurence A. Mound
18.1 What Are Thrips? 484
18.2 Family Diversity 484
18.3 The Lives of Thrips 486
18.4 Thrips Around the World 487
18.5 Thrips as Research Targets 488
18.6 Structural Diversity of Thrips 491
18.7 Thrips as Pests 493
18.8 Thrips and Human Life 494
18.9 Thrips Information Sources 495
References 496
19 The Diversity of the True Hoppers (Hemiptera: Auchenorrhyncha) 501
Charles R. Bartlett, Lewis L. Deitz, Dmitry A. Dmitriev, Allen F. Sanborn, Adeline Soulier‐Perkin
and Matthew S. Wallace
19.1 Overview of the Auchenorrhyncha 511
19.1.1 Cicadomorpha 511
19.1.1.1 Superfamily Cicadoidea – The Cicadas: Cicadidae and Tettigarctidae 516
19.1.1.2 Superfamily Cercopoidea – Spittlebugs or Froghoppers 518
19.1.1.3 Superfamily Membracoidea – Leafhoppers and Treehoppers 521
19.1.2 Fulgoromorpha 530
19.1.2.1 Superfamily Fulgoroidea – The Planthoppers 536
19.2 Prospectus 549
Acknowledgments 550
References 551
20 The Biodiversity of Sternorrhyncha: Scale Insects, Aphids, Psyllids, and Whiteflies 591
Nate B. Hardy
20.1 Sternorrhyncha and Society 591
20.1.1 Economic Importance 591
20.1.2 Ecological Importance 593
20.1.3 Existential Importance 593
20.2 Taxonomic Diversity of Sternorrhyncha 593
20.2.1 Phylogeny and Classification 593
20.2.1.1 Aphidoidea 594
20.2.1.2 Aleyrodoidea 594
20.2.1.3 Coccoidea 595
20.2.1.4 Psylloidea 595
20.3 Functional Diversity of Sternorrhyncha 596
20.3.1 Trophic Diversity 596
20.3.1.1 Phloem Feeding 596
20.3.1.2 Not Phloem Feeding 596
20.3.1.3 Trophic‐Breadth Variation 596
20.3.2 Trophic Evolution 597
20.3.3 Endosymbiosis 598
20.3.4 Endosymbiont Diversity 598
20.3.4.1 Endosymbiont Phylogenetic Diversity 598
20.3.4.2 Endosymbiont Functional Diversity 602
20.3.5 Endosymbiont Evolution 604
20.3.5.1 Ecological Speciation 605
20.3.5.2 Conflictual Speciation 606
20.3.6 Life‐Cycle Diversity 607
20.3.6.1 Aphid Soldiers and Eusocial Societies 608
20.3.6.2 Life‐Cycle Evolution 609
20.3.7 Genetic‐System Diversity 610
20.3.7.1 Holocentric Chromosomes 610
20.3.7.2 Sex Determination and Parthenogenesis 610
20.3.7.3 Sex Ratio 611
20.3.7.4 Supernumerary Chromosomes 613
20.3.8 Genetic‐System Evolution 613
20.3.8.1 What Sternorrhyncha Can Tell Us About the Evolution of Sex 613
20.3.8.2 What Sternorrhyncha Can Tell Us About the Evolution of Genetic Systems 614
20.4 Conclusions 615
Acknowledgments 616
References 616
21 Biodiversity of the Neuropterida (Insecta: Neuroptera, Megaloptera, and Raphidioptera) 627
John D. Oswald and Renato J. P. Machado
21.1 Phylogeny 628
21.2 Geological Age 628
21.3 Metamorphosis and Life Stages 629
21.3.1 Adults 629
21.3.2 Eggs and Oviposition 630
21.3.3 Larvae 632
21.3.4 Pupae 633
21.4 Biology 634
21.5 Distribution 636
21.6 Overview of Orders and Families 637
21.6.1 Order Megaloptera 642
21.6.1.1 Family Corydalidae 642
21.6.1.2 Family Sialidae 642
21.6.2 Order Neuroptera 644
21.6.2.1 Family Ascalaphidae 644
21.6.2.2 Family Berothidae 645
21.6.2.3 Family Chrysopidae 645
21.6.2.4 Family Coniopterygidae 647
21.6.2.5 Family Dilaridae 647
21.6.2.6 Family Hemerobiidae 649
21.6.2.7 Family Ithonidae 649
21.6.2.8 Family Mantispidae 650
21.6.2.9 Family Myrmeleontidae 651
21.6.2.10 Family Nemopteridae 652
21.6.2.11 Family Nevrorthidae 653
21.6.2.12 Family Nymphidae 653
21.6.2.13 Family Osmylidae 655
21.6.2.14 Family Psychopsidae 656
21.6.2.15 Family Sisyridae 656
21.6.3 Order Raphidioptera 657
21.6.3.1 Family Inocelliidae 657
21.6.3.2 Family Raphidiidae 657
21.7 Societal Importance 658
21.8 Scientific Importance 659
Acknowledgments 660
References 660
22 Biodiversity of Strepsiptera 673
Jeyaraney Kathirithamby
22.1 Family Bahiaxenidae 678
22.2 Suborder Mengenillidia 678
22.2.1 Family Mengenillidae 678
22.3 Suborder Stylopidia 681
22.3.1 Family Corioxenidae 685
22.4 Infraorder Stylopiformia 685
22.4.1 Family Myrmecolacidae 685
22.4.2 Family Lychnocolacidae 688
22.4.3 Family Stylopidae 688
22.4.4 Family Xenidae 689
22.4.5 Family Bohartillidae 690
22.4.6 Family Elenchidae 691
22.4.7 Family Halictophagidae 692
22.5 Conclusions 694
Acknowledgments 694
References 694
23 Biodiversity of Mecoptera 705
Wesley J. Bicha
23.1 Suborder Nannomecoptera 706
23.1.1 Family Nannochoristidae 706
23.2 Suborder Pistillifera 707
23.2.1 Infraorder Raptipedia 707
23.2.1.1 Family Bittacidae 707
23.2.2 Infraorder Opisthogonopora 709
23.2.2.1 Group Boreomorpha 710
23.2.2.2 Group Meropomorpha 711
23.2.2.3 Group Panorpomorpha 711
23.3 Societal Value of Mecoptera 715
23.4 Scientific Value of Mecoptera 716
23.5 Conclusion 716
References 716
Part III Perspectives 721
24 The Fossil History of Insect Diversity 723
Conrad C. Labandeira
24.1 Importance of the Insect Fossil Record 724
24.2 Types of Insect Diversity Past and Present 725
24.2.1 Taxonomic and Taxic Diversity 725
24.2.2 Ecological Diversity 730
24.2.3 Biotal Diversity 733
24.2.4 Plant–Insect Interactional Diversity 735
24.2.4.1 Short‐Term Studies 746
24.2.4.2 Intermediate‐Term Studies 746
24.2.4.3 Long‐Term Studies 747
24.2.4.4 Very Long‐Term Studies 747
24.2.5 Morphological Diversity 749
24.2.5.1 Size Disparity 753
24.2.5.2 Structural Disparity 753
24.2.5.3 Developmental Disparity 757
24.2.5.4 Key Innovations 757
24.2.6 Functional Diversity 760
24.2.6.1 Functional Feeding Groups 760
24.2.6.2 Lacustrine Ecospace Occupation 760
24.2.6.3 Parasitoids and Trophic Roles in Food Webs 761
24.2.7 Behavioral Diversity 761
24.2.7.1 Sociality 762
24.2.7.2 Mimicry and Warning Coloration 762
24.2.7.3 Pollen‐Collection Strategies 763
24.3 Biodiversity Changes Through Time 765
24.3.1 Long‐Term Environmental Change 765
24.3.1.1 Mid‐Paleozoic Beginnings of Terrestrial Ecosystems 765
24.3.1.2 Initial Taxic Radiation of Insects 765
24.3.1.3 Late Paleozoic Expansion of Herbivore Functional Feeding Groups 766
24.3.1.4 Ecological and Behavioral Changes from the Mesozoic Lacustrine Revolution 767
24.3.1.5 The Parasitoid Revolution 767
24.3.1.6 Biodiversity Ramifications of the Early Expansion of Angiosperms 768
24.3.1.7 Expansion of the Grassland Biome 769
24.3.2 Short‐Term Environmental Change 770
24.3.2.1 Permian–Triassic Global Crisis and Reductions in Biodiversity 770
24.3.2.2 Cretaceous–Paleogene Global Crisis and Reductions in Biodiversity 771
24.3.2.3 Biodiversity Realignments During the Paleocene–Eocene Thermal Maximum 772
24.3.2.4 End‐Pleistocene Extinctions and Their Meaning for the Modern World 772
24.4 Current Societal Aspects of Fossil Insect Biodiversity 773
24.4.1 Human Interests and Biases 773
24.4.2 Tools for Understanding Evolutionary and Ecological Diversification 773
24.4.3 Detection of Insect‐Borne Diseases in the Fossil Record 774
24.4.4 Insect Herbivory and Global Warming 775
24.4.5 The Current Biodiversity Crisis 775
24.5 Conclusions 776
24.5.1 The Importance of the Insect Fossil Record for Understanding Insect Diversity 776
24.5.2 The Five Fundamental Types of Diversity in the Insect Fossil Record 776
24.5.3 The Effect of Long‐Term Environmental Change on Insect Diversity 776
24.5.4 The Effect of Short‐Term Environmental Changes on Insect Diversity 776
24.5.5 How Fossil Insect Biodiversity Affects Us All 776
Acknowledgments 776
References 777
25 Phenotypes in Insect Biodiversity Research 789
István Mikó and Andrew R. Deans
25.1 Phenotype Data: Past and Present 789
25.2 Phenotype Data: Present and Future 791
25.2.1 Biological Ontologies 791
25.2.2 Ontologies in Biodiversity Research 792
25.2.2.1 Referencing a Glossary 792
25.2.2.2 Generating Logically Consistent Phenotypes 793
25.2.2.3 Reasoning Across Phenotype Data 794
25.3 Challenges and Future Directions 795
25.3.1 Social Challenges to “Standardization” 795
25.3.2 Ontology Development Barriers 795
25.3.3 Ontology Implementation Barriers 796
25.3.4 Phenotype Complexity 796
25.3.5 Communicating Primarily with Semantic Phenotypes 796
25.3.6 No Clearinghouse for Phenotype Data 796
25.3.7 Reasoning Challenges 797
Acknowledgments 797
References 797
26 Global Change and Insect Biodiversity in Agroecosystems 801
David R. Gillespie, Matthew J. W. Cock, Thibaud Decaëns, Philippa J. Gerard, Sandra D. Gillespie,
Juan J. Jiménez and Owen O. Olfert
26.1 Global Change 801
26.2 Insect Biodiversity in Agriculture 803
26.2.1 What Do We Mean By “Biodiversity”? 804
26.3 Effects of Global Change on Biodiversity – What Do We Know? 805
26.3.1 Crop Pests and Natural Enemies 805
26.3.1.1 Distribution 805
26.3.1.2 Community Composition 808
26.3.1.3 Other Responses to Climate Change 810
26.3.2 Soil Function and Topsoil Maintenance 812
26.3.3 Implications of Global Change for Crop Pollination 814
26.3.3.1 Evidence for Importance of Biodiversity for Pollination Service to Crops 814
26.3.3.2 Expected Effects of Global Change on Pollinator Diversity – Consequences for Society 814
26.4 Island Versus Continent Contrasts 815
26.4.1 Impacts on Biodiversity of Insects in Island Agroecosystems 816
26.5 Tropical Versus Temperate Issues 818
26.5.1 Climate Tolerances in Tropical and Temperate Species 819
26.6 Some Concluding Viewpoints 822
References 823
27 Digital Photography and the Democratization of Biodiversity Information 839
Stephen A. Marshall
27.1 The Digital Insect Collection 840
27.2 Digital Images in Interactive Keys 844
27.3 Digital Photography and Taxonomic Revisions 845
27.4 Organization of Digital Insect Collections 848
27.5 Conclusions 849
References 849
28 Bee (Hymenoptera: Apoidea: Anthophila) Diversity Through Time 851
Sophie Cardinal
28.1 Morphological Diversity 851
28.2 Behavioral Diversity: Social, Nesting, and Floral Hosts 852
28.3 Geographical Diversity 852
28.4 Evolutionary History and Diversification 853
28.5 Conclusions 863
References 864
29 Insect Biodiversity in Culture and Art 869
Gene Kritsky and Jessee J. Smith
29.1 Prehistory 870
29.2 Insects in the Ancient World 871
29.3 The Cult of Artemis: A Case Study 874
29.4 Roman Insect Art 875
29.5 Ancient China 876
29.6 Religions of India 877
29.7 Post‐Classical Era 877
29.8 The Americas 880
29.9 Modern History 882
29.10 Japanese Art 884
29.11 Language and Literature 886
29.12 Insects in Music 889
29.13 Insects in Cinema 891
29.14 Akihabara Culture: Toys, Video Games, and Anime from Modern Japan 892
29.15 Present and Future Trends in Cultural Entomology 894
29.16 The Internet Age 895
References 896
Index of Arthropod Taxa Arranged by Order and Family 899
Index of Arthropod Taxa Arranged Alphabetically 943
Index of non‐Arthropod Taxa Arranged Alphabetically 975
Subject Index 979
Erscheinungsdatum | 17.07.2018 |
---|---|
Verlagsort | Hoboken |
Sprache | englisch |
Maße | 201 x 249 mm |
Gewicht | 2155 g |
Themenwelt | Naturwissenschaften ► Biologie ► Zoologie |
ISBN-10 | 1-118-94557-3 / 1118945573 |
ISBN-13 | 978-1-118-94557-5 / 9781118945575 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich