Nicht aus der Schweiz? Besuchen Sie lehmanns.de
General Theory of Light Propagation and Imaging Through the Atmosphere - T. Stewart McKechnie

General Theory of Light Propagation and Imaging Through the Atmosphere

Buch | Softcover
XXIX, 624 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-37316-4 (ISBN)
CHF 194,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book lays out a new, general theory of light propagation and imaging through Earth's turbulent atmosphere. Current theory is based on the - now widely doubted - assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images.

The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before.

As well as providing a more comprehensive and precise understanding of imaging through the atmosphere with large telescopes (both with and without AO), the new general theory also finds applications in the areas of laser communications and high-energy laser beam propagation.

T. Stewart McKechnie, BS (Hons), MS, PhD, studied at Edinburgh University and Imperial College London, where he subsequently undertook postdoctoral research and lectured in Optics. After working at Loughborough University (UK), Dr. McKechnie went on to become a Consultant in Optics and program leader for optical system development of light valve and CRT-based projection TV systems at North American Philips Laboratories. In 1988 he joined Martin Marietta Corporation, Albuquerque, and in 1989 transferred to Lentec Corporation, where he was responsible for optics support at the Developmental Optics Facility relating to development of optical components for HEL systems. From 1992 to 2003 Dr. McKechnie was an Independent Optics Consultant at McKechnie Optics Research, his clients/projects including ITT Corp, NASA, the ATP Testbed program (formerly HABE), S Systems Corp, Aerotherm Corporation, Imaging Systems Laboratory (Florida Atlantic University) and Sandia National Laboratories. Between 2003 and 2009 he worked at ITT Corporation, Advanced Engineering & Sciences, Albuquerque, New Mexico, as Chief Scientist with responsibility for optical design, modeling, and construction of Light Detection and Ranging (LIDAR) and Laser Detection and Ranging (LADAR) remote sensing systems.

Introduction.- Terms, Definitions and Theoretical foundations.- Diffraction.- Wave propagation after scattering by a thin atmospheric layer.- Wave propagation over extended atmospheric paths.- Properties of point-object im ages formed by telescopes.- Properties of point-object im ages formed by telescopes.- Average intensity envelopes of unresolved star images.- Core and halo structure in star images formed by large telescopes.- Statistical properties of stellar speckle patterns.- Star image appear ance for small and large average turbulence structure sizes.- Approximate intensity envelopes for star images formed by telescopes with/without AO.- Telescope optical tolerances and telescope resolution.- Laboratory simulation of im ages formed by large telescopes.- Laser beam propagation and atmospheric path characterization.- Atmospheric isoplanatic angle: Image stabilization and AO image correction.

Erscheinungsdatum
Reihe/Serie Springer Series in Optical Sciences
Zusatzinfo XXIX, 624 p. 190 illus., 13 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 991 g
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Optik
Schlagworte Atmospheric Beam Propagation • Atmospheric Paths • Imaging Paths • Imaging Through Turbulence • Kolmogorov Model Refractive Index Structure • Kolmogorov Turbulence • Large Astronomical Telescopes • Light Propagation through Atmospheric Turbulence • Point-object Images • Star Images
ISBN-10 3-319-37316-1 / 3319373161
ISBN-13 978-3-319-37316-4 / 9783319373164
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

Buch | Softcover (2022)
Wiley-VCH (Verlag)
CHF 76,85