Quantum Theory, Groups and Representations
Springer International Publishing (Verlag)
978-3-319-64610-7 (ISBN)
Peter Woit is a Senior Lecturer of Mathematics at Columbia University. His general area of research interest is the relationship between mathematics, especially representation theory, and fundamental physics, especially quantum field theories like the Standard Model.
Preface.- 1 Introduction and Overview.- 2 The Group U(1) and its Representations.- 3 Two-state Systems and SU(2).- 4 Linear Algebra Review, Unitary and Orthogonal Groups.- 5 Lie Algebras and Lie Algebra Representations.- 6 The Rotation and Spin Groups in 3 and 4 Dimensions.- 7 Rotations and the Spin 1/2 Particle in a Magnetic Field.- 8 Representations of SU(2) and SO(3).- 9 Tensor Products, Entanglement, and Addition of Spin.- 10 Momentum and the Free Particle.- 11 Fourier Analysis and the Free Particle.- 12 Position and the Free Particle.- 13 The Heisenberg group and the Schrödinger Representation.- 14 The Poisson Bracket and Symplectic Geometry.- 15 Hamiltonian Vector Fields and the Moment Map.- 16 Quadratic Polynomials and the Symplectic Group.- 17 Quantization.- 18 Semi-direct Products.- 19 The Quantum Free Particle as a Representation of the Euclidean Group.- 20 Representations of Semi-direct Products.- 21 Central Potentials and the Hydrogen Atom.- 22 The Harmonic Oscillator.- 23 Coherent States and the Propagator for the Harmonic Oscillator.- 24 The Metaplectic Representation and Annihilation and Creation Operators, d = 1.- 25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary d.- 26 Complex Structures and Quantization.- 27 The Fermionic Oscillator.- 28 Weyl and Clifford Algebras.- 29 Clifford Algebras and Geometry.- 30 Anticommuting Variables and Pseudo-classical Mechanics.- 31 Fermionic Quantization and Spinors.- 32 A Summary: Parallels Between Bosonic and Fermionic Quantization.- 33 Supersymmetry, Some Simple Examples.- 34 The Pauli Equation and the Dirac Operator.- 35 Lagrangian Methods and the Path Integral.- 36 Multi-particle Systems: Momentum Space Description.- 37 Multi-particle Systems and Field Quantization.- 38 Symmetries and Non-relativistic Quantum Fields.- 39 Quantization of Infinite dimensional Phase Spaces.- 40 Minkowski Space and the Lorentz Group.- 41Representations of the Lorentz Group.- 42 The Poincaré Group and its Representations.- 43 The Klein-Gordon Equation and Scalar Quantum Fields.- 44 Symmetries and Relativistic Scalar Quantum Fields.- 45 U(1) Gauge Symmetry and Electromagnetic Field.- 46 Quantization of the Electromagnetic Field: the Photon.- 47 The Dirac Equation and Spin-1/2 Fields.- 48 An Introduction to the Standard Model.- 49 Further Topics.- A Conventions.- B Exercises.- Index.
"The book presents a large variety of important subjects, including the basic principles of quantum mechanics ... . This good book is recommended for mathematicians, physicists, philosophers of physics, researchers, and advanced students in mathematics and physics, as well as for readers with some elementary physics, multivariate calculus and linear algebra courses." (Michael M. Dediu, Mathematical Reviews, June, 2018)
“The book presents a large variety of important subjects, including the basic principles of quantum mechanics … . This good book is recommended for mathematicians, physicists, philosophers of physics, researchers, and advanced students in mathematics and physics, as well as for readers with some elementary physics, multivariate calculus and linear algebra courses.” (Michael M. Dediu, Mathematical Reviews, June, 2018)
Erscheinungsdatum | 23.11.2017 |
---|---|
Zusatzinfo | XXII, 668 p. 27 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1186 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Fermionic oscillator • fourier analysis and free particle • Groups & group theory • Groups & group theory • Group Theory and Generalizations • Hamiltonian vector fields • Heisenberg group • Lie algebra representations • Lie Algebras • Lie groups • Mathematical Physics • Mathematics • mathematics and statistics • Metaplectic representation • momentum and free particle • Poisson bracket and symplectic geometry • Quantization • Quantum fields • quantum free particle • quantum mechanics • Quantum Physics • Quantum physics (quantum mechanics & quantum field • Quantum physics (quantum mechanics & quantum field • Representation Theory • rotation and spin groups • Schroedinger representation • standard model of particle physics • Topological Groups, Lie Groups • two-state systems • unitary group representations |
ISBN-10 | 3-319-64610-9 / 3319646109 |
ISBN-13 | 978-3-319-64610-7 / 9783319646107 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich