Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds (eBook)
XII, 125 Seiten
Springer International Publishing (Verlag)
978-3-319-56264-3 (ISBN)
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept.
After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters.
It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms.
The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
Preface 6
Acknowledgements 8
Contents 9
Selected Symbols 11
1 Introduction 13
1.1 Space, Geometry, and Linear Algebra 13
1.2 Vectors as Geometrical Objects 14
1.3 Differentiable Manifolds: First Contact 15
1.4 Digression on Notation and Mappings 18
References 20
2 Notes on Point Set Topology 21
2.1 Preliminary Remarks and Basic Concepts 21
2.2 Topology in Metric Spaces 22
2.3 Topological Space: Definition and Basic Notions 27
2.4 Connectedness, Compactness, and Separability 29
2.5 Product Spaces and Product Topologies 31
2.6 Further Reading 33
References 34
3 The Finite-Dimensional Real Vector Space 35
3.1 Definitions 35
3.2 Linear Independence and Basis 37
3.3 Some Common Examples for Vector Spaces 40
3.4 Change of Basis 41
3.5 Linear Mappings Between Vector Spaces 42
3.6 Linear Forms and the Dual Vector Space 44
3.7 The Inner Product, Norm, and Metric 47
3.8 The Reciprocal Basis and Its Relations with the Dual Basis 49
References 52
4 Tensor Algebra 53
4.1 Tensors and Multi-linear Forms 53
4.2 Dyadic Product and Tensor Product Spaces 55
4.3 The Dual of a Linear Mapping 58
4.4 Remarks on Notation and Inner Product Operations 58
4.5 The Exterior Product and Alternating Multi-linear Forms 60
4.6 Symmetric and Skew-Symmetric Tensors 62
4.7 Generalized Kronecker Symbol 63
4.8 The Spaces ?k mathcalV and ?k mathcalV* 64
4.9 Properties of the Exterior Product and the Star-Operator 65
4.10 Relation with Classical Linear Algebra 67
References 69
5 Affine Space and Euclidean Space 70
5.1 Definitions and Basic Notions 70
5.2 Alternative Definition of an Affine Space by Hybrid Addition 72
5.3 Affine Mappings, Coordinate Charts and Topological Aspects 73
References 78
6 Tensor Analysis in Euclidean Space 79
6.1 Differentiability in mathbbR and Related Concepts Briefly Revised 79
6.2 Generalization of the Concept of Differentiability 82
6.3 Gradient of a Scalar Field and Related Concepts in mathbbRN 83
6.4 Differentiability in Euclidean Space Supposing Affine Relations 87
6.5 Characteristic Features of Nonlinear Chart Relations 94
6.6 Partial Derivatives as Vectors and Tangent Space at a Point 96
6.7 Curvilinear Coordinates and Covariant Derivative 99
6.8 Differential Forms in mathbbRN and Integration 103
6.9 Exterior Derivative and Stokes' Theorem in Form Language 105
References 108
7 A Primer on Smooth Manifolds 109
7.1 Introduction 109
7.2 Basic Concepts Regarding Analysis on Surfaces in mathbbR3 113
7.3 Transition to Smooth Manifolds 118
7.4 Tangent Bundle and Vector Fields 119
7.5 Flow of Vector Fields and the Lie Derivative 124
7.6 Outlook and Further Reading 128
References 129
Appendix Solutions for Selected Problems 130
Index 132
Erscheint lt. Verlag | 18.4.2017 |
---|---|
Reihe/Serie | Solid Mechanics and Its Applications | Solid Mechanics and Its Applications |
Zusatzinfo | XII, 125 p. 23 illus. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Maschinenbau | |
Schlagworte | Affine space • Continuum Mechanics • differentiable manifolds • Euclidean space • tensor calculus |
ISBN-10 | 3-319-56264-9 / 3319562649 |
ISBN-13 | 978-3-319-56264-3 / 9783319562643 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich