Spatial Data Handling in Big Data Era (eBook)
XIII, 237 Seiten
Springer Singapore (Verlag)
978-981-10-4424-3 (ISBN)
This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-time modeling, and geological applications.
Spatial analysis and data mining are increasingly facing the challenges of Big Data as more and more types of crowd sourcing spatial data are used in GIScience, such as movement trajectories, cellular phone calls, and social networks. In order to effectively manage these massive data collections, new methods and algorithms are called for. The book highlights state-of-the-art advances in the handling and application of spatial data, especially spatial Big Data, offering a cutting-edge reference guide for graduate students, researchers and practitioners in the field of GIScience.
CHENGHU ZHOU received his PhD from the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, with a focus on Cartography and GIS. He is currently an Academician at the Chinese Academy of Science.
FENZHEN SU completed his PhD in GIS and Cartography at the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing. He is currently Director of the State Key Lab of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
JUN XU received his PhD in Geographical Information Systems from the Department of Geography, State University of New York at Buffalo. Her research interests are in the fields of geographical ontology, spatial knowledge representation and qualitative reasoning, and spatial data mining. She is now an Associate Professor at the State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-time modeling, and geological applications.Spatial analysis and data mining are increasingly facing the challenges of Big Data as more and more types of crowd sourcing spatial data are used in GIScience, such as movement trajectories, cellular phone calls, and social networks. In order to effectively manage these massive data collections, new methods and algorithms are called for. The book highlights state-of-the-art advances in the handling and application of spatial data, especially spatial Big Data, offering a cutting-edge reference guide for graduate students, researchers and practitioners in the field of GIScience.
CHENGHU ZHOU received his PhD from the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, with a focus on Cartography and GIS. He is currently an Academician at the Chinese Academy of Science.FENZHEN SU completed his PhD in GIS and Cartography at the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing. He is currently Director of the State Key Lab of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.FRANCIS HARVEY completed his PhD at the University of Washington, Seattle, Washington. He has been head of the Department of Cartography and Visual Communication, Leibniz Institute for Regional Geography, since 2015.JUN XU received his PhD in Geographical Information Systems from the Department of Geography, State University of New York at Buffalo. Her research interests are in the fields of geographical ontology, spatial knowledge representation and qualitative reasoning, and spatial data mining. She is now an Associate Professor at the State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
Big geographical data storage and search.- Data-intensive geospatial computing and data mining.- Visualization of big geographical data.- Multi-scale spatial data representations, data structures and algorithms.- Space-time modelling and analysi.- Geological applications of Big Data and multi-criteria decision analysis.
Erscheint lt. Verlag | 4.5.2017 |
---|---|
Reihe/Serie | Advances in Geographic Information Science | Advances in Geographic Information Science |
Zusatzinfo | XIII, 237 p. 84 illus. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Naturwissenschaften ► Geowissenschaften ► Geografie / Kartografie | |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Technik | |
Schlagworte | data-intensive • geospatial computing • geo-visualization • Knowledge Discovery • multi-scale • Space-time • spatial analysis • Spatial Big Data • Spatial Data Mining • spatial data representation |
ISBN-10 | 981-10-4424-4 / 9811044244 |
ISBN-13 | 978-981-10-4424-3 / 9789811044243 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 8,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich