Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Technological Advances in Tellurite Glasses (eBook)

Properties, Processing, and Applications

V.A.G. Rivera, Danilo Manzani (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2017
IX, 335 Seiten
Springer International Publishing (Verlag)
978-3-319-53038-3 (ISBN)

Lese- und Medienproben

Technological Advances in Tellurite Glasses -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading.

This highly readable and didactic text draws on chemical composition, glass science, quantum mechanics, and electrodynamics. It is suitable for both advanced undergraduate and graduate students as well as practicing researchers.

Contents 6
Contributors 8
Chapter 1: Introduction to Tellurite Glasses 11
1.1 Smart Materials 11
1.2 Some Unique Physical Properties of Tellurite Glasses 12
1.3 Recent Processing, Properties and Applications of Tellurite Glasses 14
References 21
Chapter 2: Linear and Nonlinear Optical Properties of Some Tellurium Oxide Glasses 24
2.1 Introduction 24
2.2 Methods Used for Fabrication and Characterization of the TeO2-Based Glasses 25
2.3 Stokes and Anti-Stokes Photoluminescence 26
2.3.1 Frequency Upconversion Assisted by Phonon Annihilation 27
2.3.2 Enhanced Frequency Upconversion and Energy Transfer in the Presence of Metallic Nanoparticles 29
2.3.2.1 Tb3+/Eu3+-Co-Doped TZNP Glasses with Ag-NPs 30
2.3.2.2 Tm3+-Doped TZO Glass with Ag-NPs 33
2.3.2.3 Tm3+/Yb3+-Doped TZO with Ag-NPs 35
2.3.2.4 Er3+-Doped TWB Glasses with Ag-NPs 38
2.3.3 Rare-Earth Photoluminescence in the Presence of Silicon Nanocrystals 40
2.4 Third-Order Nonlinear Optical Properties 43
2.5 Conclusion 45
References 46
Chapter 3: Trivalent Lanthanides in Tellurite Glass 49
3.1 Introduction 49
3.2 Free Ions 50
3.3 Rare-Earth Ions in a Static Crystal Field 55
3.4 Classification of Crystal Field States and Selection Rules 57
3.5 Intensities of Optical Transitions 58
3.6 Optical Properties of the REIs in Tellurite Glasses 59
3.7 Conclusion 61
References 62
Chapter 4: Nonoxide Tellurium-Based Glasses 66
4.1 Introduction 66
4.2 Structure and Properties of Telluride Glasses 67
4.2.1 General Aspects 67
4.2.2 Different Families of Telluride Glasses 69
4.2.2.1 Chalcohalide Glasses: TeX Glasses 69
4.2.2.2 Highly Reticulated Telluride Glasses 70
4.2.2.3 Stabilizing Telluride Glasses by Addition of Selenium 73
4.2.2.4 Copper-Containing Telluride Glasses for Electrical Applications 74
4.2.2.5 Telluride Glasses as Phase-Change Materials 75
4.3 Synthesis of Telluride Glasses 76
4.4 Applications of Telluride Glasses 77
4.4.1 Fibers for Mid- and Far-Infrared Spectroscopies 77
4.4.1.1 Far-Infrared Exploration 77
4.4.1.2 Fiber Evanescent Wave Spectroscopy 83
4.4.1.3 Opto-Electrophoretic Sensing 85
4.4.2 Thermoelectricity 88
4.4.3 Data Storage 90
4.5 Summary 93
References 93
Chapter 5: Photonic Applications of Tellurite Glasses 99
5.1 Introduction 99
5.2 Photonic Applications of Tellurite Glasses 100
5.3 Photonics Field Application of Tellurite Glasses 101
5.3.1 Nanowires 101
5.3.2 Planar and Channel Waveguide 102
5.3.3 Fiber on Glass Waveguide 104
5.3.4 Localized Temperature Sensing 104
References 105
Chapter 6: Lasers Utilising Tellurite Glass-Based Gain Media 107
6.1 Introduction 107
6.2 Rare-Earth-Doped Tellurite Glass Lasers 111
6.2.1 Neodymium: Nd3+ 111
6.2.1.1 Bulk Glass 112
6.2.1.2 Fibre 113
6.2.1.3 Microcavity 113
6.2.2 Erbium: Er3+ 114
6.2.2.1 Fibre 114
6.2.2.2 Microcavity 116
6.2.3 Thulium: Tm3+ 117
6.2.3.1 Bulk Glass 117
6.2.3.2 Fibre 119
6.2.3.3 Microcavity 122
6.2.4 Holmium: Ho3+ 123
6.2.4.1 Bulk Glass 124
6.2.4.2 Fibre 124
6.3 Other Tellurite Glass Light Sources 127
6.3.1 Raman Lasers 127
6.3.2 Supercontinuum Sources 128
Future Prospects for Tellurite Glass-Based Laser Sources 132
Conclusions 133
References 133
Chapter 7: Tellurite Glasses for Optical Amplifiers 137
7.1 Introduction 137
7.2 Tellurite Glasses for Optical Amplifiers 138
7.2.1 Fabrication of Core and Clad Tellurite Optical Fibers 139
7.2.2 Fabrication of the Er3+-Doped Tellurite Micro-Structured Optical Fiber 142
7.2.2.1 Tellurite Rod, Tube, and Capillary Fabrication 142
7.2.2.2 Tellurite Micro-Structured Preform Fabrication 144
7.2.2.3 Tellurite Micro-Structured Optical Fiber Fabrication 146
7.3 Optical Attenuation of Tellurite Fibers 148
7.4 Amplified Spontaneous Emission, Gain, and Laser Generation 149
7.5 Broadband Optical Amplification 153
7.6 Rare-Earth Level Lifetimes in Tellurite Glasses 155
References 157
Chapter 8: Broadband Emission in Tellurite Glasses 160
8.1 Introduction 161
8.2 Energy Level Structure of Broadband Emitting Ln and TM Ions 163
8.2.1 Lanthanides 163
8.2.2 Transition Metal Ions 168
8.3 Tellurite Glasses and Their Background 171
8.4 Broadband Emission in Tellurite Glasses 172
8.4.1 Spectroscopy of Broadband Emission in Tellurite Glasses 175
8.4.2 Influence of Ln Concentration on Broadband Emission 183
8.4.3 Effect of Glass Formers and Modifiers on Broadband Emission 186
8.4.4 Influence of Heat Treatment on Broadband Emission 187
8.4.4.1 Glass-Ceramics Containing Nanocrystals 187
8.4.4.2 Metal Nanoparticles 189
8.4.5 Broadband Emission in Thin Films 189
8.4.6 Quenching of Broadband Emission from OH- Groups 189
8.4.7 Broadband Emission in Low OH- Content Tellurite Glasses 190
8.4.8 Superbroadband Emission in Tellurite Glasses 192
8.5 Broadband Absorption for Solar Cells 193
8.5.1 Upconversion 194
8.5.2 Downconversion/Quantum Cutting 197
8.6 Bi-Doped Fiber Amplifiers 198
8.7 Raman Amplifiers 199
8.8 Supercontinuum Generation 200
8.9 White LED´s 201
8.10 Laser Induced Cooling of Solids 202
8.11 Summary 207
References 208
Chapter 9: Tellurite Glass Fibers for Mid-infrared Nonlinear Applications 217
9.1 Introduction 217
9.2 Fabrication 221
9.2.1 Preform Fabrication 221
9.2.2 Fabrication of Structured Preforms for Tellurite Photonic Crystal Fibers 223
9.2.3 Fiber Fabrication 223
9.3 Selection of Glass Compositions as Fiber Host 226
9.4 Impurities in Tellurite Glasses and Glass Dehydration 227
9.5 Experimental Results on Mid-infrared Generation in Tellurite Glass Fibers 230
9.5.1 Early Work on Small-Core Tellurite Glass Fiber for Mid-infrared Nonlinear Optics 230
9.5.2 Dehydrated Small-Core Tellurite Glass Fiber 233
9.5.3 Power Limitations in Small-Core Tellurite Glass Fibers 235
9.5.4 Supercontinuum Generation in Large-Mode-Area Tellurite Glass Fiber 236
9.6 Outlook 239
References 240
Chapter 10: Tellurite Thin Films Produced by RF Sputtering for Optical Waveguides and Memory Device Applications 244
10.1 Introduction 244
10.2 Experimental Details 246
10.2.1 Thin Film Fabrication 246
10.2.2 Production of the Pedestal Waveguide 246
10.2.3 Characterization Techniques 247
10.3 Results and Discussion 248
10.3.1 Production of Mach-Zehnder Interferometer Structures on Bi2O3-WO3-TeO2 Pedestal-Type Waveguides for the Production of O... 248
10.3.2 Optical Amplifier Based on Pedestal Waveguides Produced with Yb3+/Er3+ Codoped Bi2O3-WO3-TeO2 Thin Films 250
10.3.3 TeO2-ZnO Thin Films with Au Nanoparticles for Memory Devices 253
10.4 Conclusions 258
References 259
Chapter 11: Laser Writing in Tellurite Glasses 261
11.1 Introduction 261
11.2 Femtosecond Laser Waveguide Writing 262
11.2.1 Nonlinear Absorption 262
11.2.2 Relaxation and Material Modification 264
11.2.3 Repetition Rate 264
11.2.4 Linear and Nonlinear Propagation 265
11.3 Laser Writing in Tellurite Glasses 268
11.3.1 Near-Infrared Applications 268
11.3.2 Mid-Infrared Applications 276
References 277
Chapter 12: Supercontinuum Generation in Tellurite Optical Fibers 279
12.1 Bibliographic Data 279
12.2 Brief Considerations on Tellurite Glass Compositions for Supercontinuum Generation in Optical Fibers 279
12.3 Fiber Structures 284
12.4 Pumping Conditions and Coupling Issues 287
12.5 Supercontinuum Generation Achievements 289
12.6 Nonlinear Dynamics and Modeling 290
12.6.1 Numerical Model 292
12.6.2 Simulation Results 294
12.6.3 Discussion 295
12.7 Conclusion 298
References 298
Chapter 13: Tellurite Glasses for Plasmonics 302
13.1 Introduction 302
13.2 Localized Surface Plasmon Resonance and Plasmonic Nanostructures 303
13.2.1 Introduction 303
13.2.2 Theory 305
13.2.3 Experimental Details 306
13.2.3.1 Spectroscopy 306
13.2.3.2 Size and Shape Dependence 307
13.2.3.3 Localized Surface Plasmon Resonance Distance Dependence 308
13.2.3.4 Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances 309
13.3 Tellurite Glasses Doped with REIS 309
13.3.1 A Summary of the Optical, Structural, and Thermal Properties of Tellurite Glasses 309
13.3.2 Spectroscopic Analysis 310
13.4 Plasmonic Nanostructure Coupled with REIS: Plasmon-Photon Interaction 311
13.4.1 Local Field Enhancement 312
13.4.2 Energy Transfer 314
13.4.3 Resonance Modes and Tuning 316
13.4.3.1 Effects of Nanostructure Arrays on REI 317
13.4.3.2 Transmission Enhancement 319
13.4.3.3 Focusing of Surface Plasmon Polaritons 321
13.4.3.4 Polarization Control 322
13.5 Potential Applications 323
References 325
Index 332

Erscheint lt. Verlag 30.3.2017
Reihe/Serie Springer Series in Materials Science
Springer Series in Materials Science
Zusatzinfo IX, 335 p. 169 illus., 117 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Near-infrared Emission • Near-Infrared Nonlinearity • Optical and Structural Properties of Tellurite • Photonics and Nanophotonics • Photonics Applications of Tellurite Glasses • Rare-earth Luminescence • Supercontinuum Generation in Tellurite fiber • Tellurite Fiber Sensor Technology • Tellurite Glasses • Tellurite Glasses for Plasmonics • Trivalent Lanthanides • Upconversion Emission
ISBN-10 3-319-53038-0 / 3319530380
ISBN-13 978-3-319-53038-3 / 9783319530383
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich