Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis Knowledge Updates 2017 Vol.1 (eBook)

eBook Download: PDF
2017 | 1. Auflage
528 Seiten
Thieme (Verlag)
978-3-13-241411-2 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2017 Vol.1 -
Systemvoraussetzungen
2.999,99 inkl. MwSt
(CHF 2929,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

  • Hot-spot updates across all categories ensure access to state-of-the-art synthetic methodology
  • 5% annuals update-rate
  • 3 Update volumes

Thieme: Science of Synthesis Knowledge Updates 2017/1 1
Title Page 6
Copyright 8
Preface 9
Abstracts 11
Science of Synthesis Knowledge Updates 2017/1 21
Table of Contents 23
3.6.16 Gold-Catalyzed Cycloaddition Reactions 37
3.6.16.1 Cycloadditions via Gold-Containing 1,n-Dipolar Intermediates 37
3.6.16.1.1 Method 1: Gold-Containing Benzopyrylium Intermediates 38
3.6.16.1.1.1 Variation 1: Gold-Containing Benzopyrylium Azomethine Ylides 44
3.6.16.1.1.2 Variation 2: Gold-Containing 2-Oxoalkyl Oxonium Species 47
3.6.16.1.2 Method 2: Furyl–Gold 1,n-Dipole Intermediates 48
3.6.16.1.2.1 Variation 1: Furyl–Gold 1,3-Dipole Intermediates 48
3.6.16.1.2.2 Variation 2: Furyl–Gold 1,4-Dipole Intermediates 51
3.6.16.1.2.3 Variation 3: Furan-Based ortho-Quinodimethane Intermediates 54
3.6.16.1.3 Method 3: Gold-Containing All-Carbon 1,3-Dipoles 55
3.6.16.2 Cycloadditions via Gold-Coordinated Allene Intermediates 57
3.6.16.2.1 Method 1: Cycloadditions Initiated by Gold Activation of Allenes 57
3.6.16.2.2 Method 2: Cycloadditions Initiated by Gold Activation of Propargylic Carboxylates 69
3.6.16.3 Cycloadditions via trans-Alkenylgold Intermediates 71
3.6.16.3.1 Method 1: trans-Alkenylgold Intermediates Generated by Alkyne Activation 71
3.6.16.3.1.1 Variation 1: Alkynes as Latent Alkenes in Gold-Catalyzed Cycloadditions 74
3.6.16.4 Cycloadditions via Gold Carbene Intermediates 76
3.6.16.4.1 Method 1: Gold Carbenes Generated by Cycloisomerization of Alkynes and Alkenes 76
3.6.16.4.2 Method 2: Gold Carbenes Generated by 1,2-Acyloxy Migration of Propargyl Carboxylates 81
3.6.16.4.3 Method 3: Gold Carbenes Generated by Alkyne Oxidation 84
3.6.16.4.3.1 Variation 1: Gold-Catalyzed Cycloaddition Reactions by Nitrene Transfer 87
3.6.16.4.3.2 Variation 2: Gold-Catalyzed Cycloaddition Reactions by Carbene Transfer 88
3.6.16.4.4 Method 4: Gold Carbenes Generated by Diazo Decomposition 89
3.6.16.5 Cycloadditions via Gold-Coordinated Heteroatom Intermediates 91
4.4.7 Product Subclass 7: Silylboron Reagents 101
4.4.7.1 Synthesis of Product Subclass 7 104
4.4.7.1.1 Preparation by Si—B Bond Formation 104
4.4.7.1.1.1 Method 1: Nucleophilic Substitution at Boron with Silyllithium Reagents 104
4.4.7.1.1.1.1 Variation 1: Substitution of Amino-Substituted Chloroboranes 104
4.4.7.1.1.1.2 Variation 2: Substitution of a Diaryl-Substituted Fluoroborane 105
4.4.7.1.1.1.3 Variation 3: Nucleophilic Substitution of Diol-Substituted Hydro- or Alkoxyboranes 106
4.4.7.1.1.2 Method 2: Iridium-Catalyzed Borylation of Trialkylsilanes 107
4.4.7.1.1.3 Method 3: Reductive Coupling of Chlorosilanes and Chloroboranes 108
4.4.7.1.2 Modification of Si—B Substitution Pattern 109
4.4.7.1.2.1 Method 1: Ligand Exchange at the Boron Atom 109
4.4.7.1.2.2 Method 2: Manipulation at the Silicon Atom 111
4.4.7.2 Applications of Product Subclass 7 in Organic Synthesis 113
4.4.7.2.1 Method 1: Reactions with Alkynes 113
4.4.7.2.1.1 Variation 1: Transition-Metal-Catalyzed Silaboration 113
4.4.7.2.1.2 Variation 2: Palladium-Catalyzed Silaborative Cyclization 119
4.4.7.2.1.3 Variation 3: Nickel-Catalyzed Silaborative Dimerization 120
4.4.7.2.1.4 Variation 4: Palladium-Catalyzed (2 + 2 + 1) Cycloaddition with Silylenes 121
4.4.7.2.1.5 Variation 5: Copper-Catalyzed Silylation 122
4.4.7.2.2 Method 2: Reactions with Alkenes 127
4.4.7.2.2.1 Variation 1: Platinum-Catalyzed Silaboration 127
4.4.7.2.2.2 Variation 2: Base-Catalyzed Silaboration 131
4.4.7.2.2.3 Variation 3: Photochemical Radical Silylation 132
4.4.7.2.3 Method 3: Reactions with Conjugated Dienes and Enynes 133
4.4.7.2.3.1 Variation 1: Transition-Metal-Catalyzed 1,4-Silaboration 133
4.4.7.2.3.2 Variation 2: Platinum-Catalyzed Silaborative Coupling of 1,3-Dienes and Aldehydes 136
4.4.7.2.3.3 Variation 3: Nickel-Catalyzed Silylative Coupling of 1,3-Dienes and Aldehydes 137
4.4.7.2.3.4 Variation 4: Palladium-Catalyzed (4 + 1) Cycloaddition with Silylenes 138
4.4.7.2.4 Method 4: Reactions with Allenes 140
4.4.7.2.4.1 Variation 1: Palladium-Catalyzed Silaboration 140
4.4.7.2.4.2 Variation 2: Copper-Catalyzed Silylation 145
4.4.7.2.5 Method 5: Reactions with C=X Bonds 151
4.4.7.2.5.1 Variation 1: 1,2-Silylation of Aldehydes 151
4.4.7.2.5.2 Variation 2: 1,2-Silylation of Imines 153
4.4.7.2.5.3 Variation 3: Reaction with Anhydrides 157
4.4.7.2.6 Method 6: Reactions with ?,?-Unsaturated Carbonyl and Carboxy Compounds and Derivatives Thereof 158
4.4.7.2.6.1 Variation 1: Transition-Metal-Catalyzed 1,4-Silylation of Enones and ?,?- Unsaturated Esters 158
4.4.7.2.6.2 Variation 2: N-Heterocyclic Carbene Catalyzed 1,4-Silylation of Enones, Enals, or Unsaturated Esters 171
4.4.7.2.6.3 Variation 3: Copper-Catalyzed 1,4-Silylation of Ynones and Derivatives Thereof 173
4.4.7.2.6.4 Variation 4: Metal-Free Phosphine-Catalyzed Silaboration of Ynoates 178
4.4.7.2.7 Method 7: Reactions with Allylic and Propargylic Electrophiles 179
4.4.7.2.7.1 Variation 1: Copper-Catalyzed Allylic Substitution 179
4.4.7.2.7.2 Variation 2: Silylative Cyclopropanation 184
4.4.7.2.7.3 Variation 3: Transition-Metal-Catalyzed Propargylic Substitution 185
4.4.7.2.8 Method 8: Reactions with (Het)arenes 187
4.4.7.2.8.1 Variation 1: Silaborative Dearomatization of Nitrogen Heterocycles 187
4.4.7.2.8.2 Variation 2: Nickel/Copper-Catalyzed Silylation 189
4.4.7.2.8.3 Variation 3: Base-Catalyzed Borylation 191
4.4.7.2.8.4 Variation 4: Iridium-Catalyzed Borylation 194
4.4.7.2.9 Method 9: Reactions with Strained Ring Compounds 195
4.4.7.2.9.1 Variation 1: Silaboration of Methylenecyclopropanes 195
4.4.7.2.9.2 Variation 2: Silaboration of Vinylcyclopropanes, Vinylcyclobutanes, and Related Compounds 199
4.4.7.2.10 Method 10: Reactions with Carbenoids and Related Compounds 201
4.4.7.2.10.1 Variation 1: Insertion of Alkylidene-Type Carbenoids into the Si—B Bond 201
4.4.7.2.10.2 Variation 2: Insertion of sp3-Carbon-Centered Carbenoids into the Si—B Bond 204
4.4.7.2.10.3 Variation 3: Insertion of Isocyanides into the Si—B Bond 206
4.4.7.2.11 Method 11: Miscellaneous Reactions 208
4.4.7.2.11.1 Variation 1: Stereoselective Deoxygenation of trans-Stilbene Oxides 208
4.4.7.2.11.2 Variation 2: B—N Bond Formation by Desilacoupling Catalyzed by a Strontium Bisamide Base 209
4.4.11 Product Subclass 11: Silyllithium and Related Silyl Alkali Metal Reagents 213
4.4.11.1 Method 1: Reductive Cleavage of Disilanes with Alkali Metals 214
4.4.11.2 Method 2: Reduction of Halotriorganosilanes with Alkali Metals 215
4.4.11.3 Method 3: Nucleophilic Cleavage of Si-M Bonds (M = Si, Sn, etc.) 216
4.4.11.3.1 Variation 1: Si—Si Bond Cleavage 217
4.4.11.3.2 Variation 2: Si—Sn Bond Cleavage 219
4.4.11.4 Method 4: Si—H Bond Cleavage 219
4.4.11.4.1 Variation 1: Si—H Bond Cleavage by Alkali Metals 219
4.4.11.4.2 Variation 2: Si—H Bond Cleavage by Alkali Metal Hydrides 221
4.4.11.5 Method 5: Preparation via Disilylmercury Compounds 222
4.4.19.4 Silyl Sulfides and Selenides (Update 2017) 225
4.4.19.4.1 Synthesis of Silyl Sulfides and Selenides 225
4.4.19.4.1.1 Method 1: Synthesis by Reaction of Alkali Metals, Chalcogens, and Halosilanes or Alkali Metal Chalcogenides and Halosilanes 225
4.4.19.4.1.1.1 Variation 1: From Lithium, Sulfur, and Halosilanes 225
4.4.19.4.1.1.2 Variation 2: From Sodium, Sulfur, and Halosilanes 226
4.4.19.4.1.1.3 Variation 3: From Lithium Sulfide and Halosilanes 227
4.4.19.4.1.1.4 Variation 4: From Lithium Selenide and Halosilanes 228
4.4.19.4.1.1.5 Variation 5: From Lithium Chalcogenides, Generated from Lithium Triethylborohydride and Chalcogens, and Halosilanes 229
4.4.19.4.1.2 Method 2: Synthesis from Diselenides and Halosilanes 229
4.4.19.4.1.2.1 Variation 1: From Dimethyl Diselenide, Lithium Aluminum Hydride, and Halosilanes 229
4.4.19.4.1.2.2 Variation 2: From Diphenyl Diselenide, Sodium, and Halosilanes 230
4.4.19.4.1.2.3 Variation 3: From Diphenyl Diselenide, Lithium in Liquid Ammonia, and Halosilanes 230
4.4.19.4.1.3 Method 3: Synthesis from Selanols 231
4.4.19.4.1.4 Method 4: Synthesis from Alkynes, Butyllithium, Sulfur, and Halosilanes 232
4.4.19.4.1.5 Method 5: Synthesis Using Phosphorus-Based Reagents 233
4.4.19.4.1.5.1 Variation 1: From Silylphosphines and Sulfur 233
4.4.19.4.1.5.2 Variation 2: From Phosphine Sulfides and (Dimethylamino)trimethylsilane 233
4.4.19.4.1.5.3 Variation 3: From Phosphorus Pentasulfide and Alkoxytrimethylsilanes or (Alkylsulfanyl)trimethylsilanes 234
4.4.19.4.1.6 Method 6: Synthesis from Grignard Reagents, Selenium, and Halosilanes 234
4.4.19.4.1.7 Method 7: Synthesis from Existing Silyl Selenides by Substitution of a Group on Selenium 235
4.4.19.4.2 Applications of Silyl Sulfides and Selenides 235
4.4.24.3 Silyl Cyanides (Update 2017) 239
4.4.24.3.1 Tetracoordinate Silyl Cyanides 239
4.4.24.3.1.1 Method 1: Transmetalation of Silyl Chlorides 239
4.4.24.3.1.2 Method 2: Metathesis between Si—H and X—CN Bonds (X=C, N, O, Si) 240
4.4.24.3.1.3 Method 3: Insertion of Silylenes into Isocyanides 241
4.4.24.3.1.4 Method 4: Transformation of Si=C=N-Si Units 242
4.4.24.3.2 Extracoordinate Silyl Cyanides 244
4.4.24.3.2.1 Method 1: Reaction of Pentacoordinate Silyl Chlorides with Cyanotrimethylsilane 244
4.4.24.3.2.2 Method 2: Reaction of Hexacoordinate Silyl Chlorides with Cyanotrimethylsilane 246
4.4.47 Product Subclass 47: Silanols 249
4.4.47.1 Synthesis of Silanols 249
4.4.47.1.1 Method 1: Hydrolysis of Chlorosilanes 249
4.4.47.1.1.1 Variation 1: Biphasic Hydrolysis of Chlorosilanes 250
4.4.47.1.1.2 Variation 2: Biphasic Hydrolysis of Chlorosilanes with Triethylamine 250
4.4.47.1.1.3 Variation 3: Synthesis of Bulky Silanediols from Chlorosilanes 251
4.4.47.1.2 Method 2: Stoichiometric Oxidation of Silanes 252
4.4.47.1.2.1 Variation 1: Oxidation of Silanes with Ozone 252
4.4.47.1.2.2 Variation 2: Oxidation of Silanes with Peroxy Acids 253
4.4.47.1.2.3 Variation 3: Oxidation of Silanes with Dioxiranes or Oxaziridines 254
4.4.47.1.2.4 Variation 4: Oxidation of Silanes with Potassium Permanganate and Sonication 255
4.4.47.1.2.5 Variation 5: Oxidation of Silanes with Osmium(VIII) Oxide 255
4.4.47.1.3 Method 3: Catalytic Oxidation of Silanes 256
4.4.47.1.3.1 Variation 1: Heterogeneous Catalytic Oxidation of Silanes with Water 257
4.4.47.1.3.2 Variation 2: Catalytic Oxidation of Silanes with Nanoparticles 257
4.4.47.1.3.3 Variation 3: Homogeneous Catalytic Oxidation of Silanes with Water 259
4.4.47.1.3.4 Variation 4: Catalytic Oxidation of Silanes with Peroxides or Oxygen 264
4.4.47.1.3.5 Variation 5: Organocatalytic Oxidation of Silanes 266
4.4.47.1.4 Method 4: Hydrolysis of Aromatic C(sp2)—Si Bonds 266
4.4.47.1.5 Method 5: Cleavage of Siloxy- and Alkoxysilanes 269
4.4.47.2 Catalytic Activity of Silanols 271
4.4.47.2.1 Method 1: Hydrogen-Bond-Donor Catalysis Involving Silanediols 271
4.4.47.2.2 Method 2: Silanediols in Anion-Binding Catalysis 273
4.4.47.2.3 Method 3: Catalytic Activity of Bissilanols 275
4.4.47.2.4 Method 4: Catalytic Activity of Monosilanols 275
4.4.47.3 Silanols as Directing Groups 277
10.22.2 Product Subclass 2: Azaindol-1-ols 283
10.22.2.1 Synthesis by Ring-Closure Reactions 283
10.22.2.1.1 By Annulation to a Pyridine 283
10.22.2.1.1.1 With Formation of One N—C Bond 283
10.22.2.1.1.1.1 With Formation of the 1—2 Bond 283
10.22.2.1.1.1.1.1 Method 1: From 2-(o-Nitropyridyl)acetates 283
10.22.2.1.1.1.1.2 Method 2: From an (Alkenylpyridyl)hydroxylamine 285
10.22.2.1.1.1.1.3 Method 3: From a 2-(3-Nitropyridin-2-yl)ethanone 286
10.22.2.1.1.1.1.4 Method 4: From 2-(3-Nitropyridin-2-yl)pent-4-enenitrile 286
10.22.2.1.1.1.2 With Formation of the 1—7a Bond 287
10.22.2.1.1.1.2.1 Method 1: From 1-(3-Pyridyl)-2-nitropropene and an Isocyanide 287
10.22.2.2 Synthesis by Substituent Modification 288
10.22.2.2.1 Substitution of Existing Substituents 288
10.22.2.2.1.1 Pyrrole Ring Substituents 288
10.22.2.2.1.1.1 Method 1: Modification of C-Nitrogen at C2 288
10.22.2.2.1.1.2 Method 2: Modification of N-Oxygen at N1 289
10.22.3 Product Subclass 3: 1,3-Dihydroazaindol-2-ones 293
10.22.3.1 Synthesis by Ring-Closure Reactions 293
10.22.3.1.1 By Annulation to a Pyridine 293
10.22.3.1.1.1 By Formation of Two N—C Bonds 293
10.22.3.1.1.1.1 With Formation of the 1—7a and 1—2 Bonds 293
10.22.3.1.1.1.1.1 Method 1: From 2-(2-Chloropyridin-3-yl)acetic Acid 293
10.22.3.1.1.2 By Formation of One N—C Bond and One C—C Bond 294
10.22.3.1.1.2.1 With Formation of the 1—2 and 2—3 Bonds 294
10.22.3.1.1.2.1.1 Method 1: From Lithiated ortho-Methylpyridinamines 294
10.22.3.1.1.2.2 With Formation of the 1—2 and 3—3a Bonds 295
10.22.3.1.1.2.2.1 Method 1: From a 2-Pyridylhydrazide 295
10.22.3.1.1.3 By Formation of Two C—C Bonds 296
10.22.3.1.1.3.1 With Formation of 2—3 and 3—3a Bonds 296
10.22.3.1.1.3.1.1 Method 1: From N-Pivaloylpyridinamines 296
10.22.3.1.1.4 By Formation of One N—C Bond 297
10.22.3.1.1.4.1 With Formation of the 1—7a Bond 297
10.22.3.1.1.4.1.1 Method 1: From 2-(2-Chloropyridin-3-yl)acetamide 297
10.22.3.1.1.4.1.2 Method 2: From 2-(2-Bromopyridin-3-yl)acetonitrile 298
10.22.3.1.1.4.1.3 Method 3: From 2-Hydroxy-N-morpholino-2-(3-pyridyl)acetamide 298
10.22.3.1.1.4.2 With Formation of the 1—2 Bond 300
10.22.3.1.1.4.2.1 Method 1: From a 2-(Nitropyridyl)malonate 300
10.22.3.1.1.4.2.2 Method 2: From a 2-Cyano-2-(3-nitropyridyl)acetate 303
10.22.3.1.1.4.2.3 Method 3: From (3-Nitropyridyl)acetonitriles 307
10.22.3.1.1.4.2.4 Method 4: From (3-Nitropyridyl)acetates 308
10.22.3.1.1.4.2.5 Method 5: From (2-Aminopyridin-3-yl)acetic Acid 311
10.22.3.1.1.5 By Formation of One C—C Bond 312
10.22.3.1.1.5.1 With Formation of the 3—3a Bond 312
10.22.3.1.1.5.1.1 Method 1: From N-(3-Bromopyridin-2-yl)alk-2-enamides 312
10.22.3.1.1.5.1.2 Method 2: From N-Pyridylpropanamides 312
10.22.3.1.1.5.1.3 Method 3: From N-(Halopyridyl) Amides 314
10.22.3.1.1.5.1.4 Method 4: From N-(2-Chloropyridin-3-yl)acetamides 316
10.22.3.1.1.5.1.5 Method 5: From a 2-Bromo-N-pyridylacetamide 316
10.22.3.1.1.5.1.6 Method 6: From a Pyridylcarbamoylmethyl Xanthate 317
10.22.3.1.1.5.1.7 Method 7: From Diethyl {2-[(2-Bromopyridin-3-yl)amino]- 2-oxoethyl}phosphonate and an Aldehyde 320
10.22.3.2 Synthesis by Ring Transformation 321
10.22.3.2.1 From Other Heterocyclic Systems 321
10.22.3.2.1.1 Method 1: 1H-Pyrrolopyridines by 3,3-Dibromination 321
10.22.3.2.1.2 Method 2: From a 1H-Pyrrolo[2,3-b]pyridine by Enzymatic Oxidation 326
10.22.3.2.1.3 Method 3: From a 1H-Pyrrolopyridine-2,3-dione 326
10.22.3.3 Synthesis by Substituent Modification 330
10.22.3.3.1 Substitution of Existing Substituents 330
10.22.3.3.1.1 Pyridine Ring Substituents 330
10.22.3.3.1.1.1 Modification of C-Halogen at C5 330
10.22.3.3.1.1.1.1 Method 1: Formation of C-Carbon 330
10.22.3.3.1.1.2 Modification of Nitrogen at N4 333
10.22.3.3.1.1.2.1 Method 1: Formation of N-Carbon 333
10.22.3.3.1.2 Pyrrole Ring Substituents 334
10.22.3.3.1.2.1 Substitution of C-Hydrogen at C3 334
10.22.3.3.1.2.1.1 Method 1: Formation of C-Carbon (Alkylation) 334
10.22.3.3.1.2.1.2 Method 2: Formation of C-Carbon (Alkenylation) 339
10.22.4 Product Subclass 4: 1,2-Dihydroazaindol-3-ones 349
10.22.4.1 Synthesis by Ring-Closure Reactions 350
10.22.4.1.1 By Annulation to a Pyridine 350
10.22.4.1.1.1 By Formation of One N—C and One C—C Bond 350
10.22.4.1.1.1.1 With Formation of the 1—7a and 2—3 Bonds 350
10.22.4.1.1.1.1.1 Method 1: From a Pyridine Ester with an ortho-Amino Group 350
10.22.4.1.1.1.2 With Formation of the 3—3a and 1—2 Bonds 351
10.22.4.1.1.1.2.1 Method 1: From 3-Iodopyridin-2-amines and 1-Methoxyallene 351
10.22.4.1.1.2 By Formation of One N—C Bond 352
10.22.4.1.1.2.1 With Formation of the 1—7a Bond 352
10.22.4.1.1.2.1.1 Method 1: From (2-Chloropyridin-3-yl)(1H-pyrrol-2-yl)methanone 352
10.22.4.1.1.3 By Formation of One C—C Bond 352
10.22.4.1.1.3.1 With Formation of the 2—3 Bond 352
10.22.4.1.1.3.1.1 Method 1: From an N-Pyridylglycine 352
10.22.4.1.2 By Annulation to a Pyrrole 354
10.22.4.1.2.1 By Formation of Two C—C Bonds 354
10.22.4.1.2.1.1 With Formation of the 4—5 and 6—7 Bonds 354
10.22.4.1.2.1.1.1 Method 1: From a Masked 2-Amino-4-oxo-1H-pyrrole-3-carbaldehyde 354
10.22.4.2 Synthesis by Ring Transformation 355
10.22.4.2.1 From Other Heterocyclic Systems 355
10.22.4.2.1.1 Method 1: From a Tetrazolo[1,5-a]pyridine 355
10.22.4.2.1.2 Method 2: From a 1H-Pyrrolo[2,3-b]pyridine-3-carbaldehyde 355
10.22.4.3 Synthesis by Substituent Modification 356
10.22.4.3.1 Substitution of Existing Substituents 356
10.22.4.3.1.1 Pyrrole Ring Substituents 356
10.22.4.3.1.1.1 Modification of C-Oxygen at C3 356
10.22.4.3.1.1.1.1 Method 1: Formation of O-Carbon 356
10.22.4.3.1.1.2 Substitution of C-Hydrogen at C2 357
10.22.4.3.1.1.2.1 Method 1: Formation of C-Carbon 357
10.22.4.3.1.1.3 Modification of Nitrogen at N1 359
10.22.4.3.1.1.3.1 Method 1: Formation of N-Carbon 359
10.22.5 Product Subclass 5: 1H-Azaindole-2,3-diones 361
10.22.5.1 Synthesis by Ring-Closure Reactions 362
10.22.5.1.1 By Annulation to a Pyridine 362
10.22.5.1.1.1 By Formation of One N—C Bond 362
10.22.5.1.1.1.1 With Formation of the 1—2 Bond 362
10.22.5.1.1.1.1.1 Method 1: From {4-[(tert-Butoxycarbonyl)amino]pyridin-3-yl}glyoxylate 362
10.22.5.2 Synthesis by Ring Transformation 362
10.22.5.2.1 From Other Heterocyclic Systems 362
10.22.5.2.1.1 Method 1: From a 1,3-Dihydro-2H-pyrrolopyridin-2-one 362
10.22.5.2.1.2 Method 2: From a Pyrrolopyridine 365
10.22.5.3 Synthesis by Substituent Modification 371
10.22.5.3.1 Substitution of Existing Substituents 371
10.22.5.3.1.1 Pyridine Ring Substituents 371
10.22.5.3.1.1.1 Substitution of C-Hydrogen at C5 371
10.22.5.3.1.1.1.1 Method 1: Giving C-Halogen 371
10.22.5.3.1.2 Pyrrole Ring Substituents 372
10.22.5.3.1.2.1 Substitution of N-Hydrogen at N1 372
10.22.5.3.1.2.1.1 Method 1: Formation of N-Carbon 372
10.22.6 Product Subclass 6: Azaindol-2- and Azaindol-3-amines 375
10.22.6.1 Synthesis by Ring-Closure Reactions 375
10.22.6.1.1 By Annulation to a Pyridine 375
10.22.6.1.1.1 By Formation of One N—C and One C—C Bond 375
10.22.6.1.1.1.1 With Formation of the 1—2 and 3—3a Bonds 375
10.22.6.1.1.1.1.1 Method 1: From a 2-Halo-3-nitropyridine and a 2-Cyanoacetamide 375
10.22.6.1.1.1.2 With Formation of the 1—2 and 2—3 Bonds 376
10.22.6.1.1.1.2.1 Method 1: From Aminopyridine-3-carbonitriles 376
10.22.6.1.1.2 By Formation of One N—C Bond 377
10.22.6.1.1.2.1 With Formation of the 1—2 Bond 377
10.22.6.1.1.2.1.1 Method 1: From an Ethyl 2-Cyano-2-(3-nitropyridyl)acetate 377
10.22.6.1.1.2.1.2 Method 2: From a 2-[3-(Alkylamino)pyridin-2-yl]acetonitrile 378
10.22.6.1.1.2.1.3 Method 3: From 3-Ethynyl-N-methylpyridin-2-amine 379
10.22.6.1.1.3 By Formation of One C—C Bond 380
10.22.6.1.1.3.1 With Formation of the 2—3 Bond 380
10.22.6.1.1.3.1.1 Method 1: From Substituted 2-Aminopyridine-3-carbonitriles 380
10.22.6.2 Synthesis by Ring Transformation 381
10.22.6.2.1 From Other Heterocyclic Systems 381
10.22.6.2.1.1 Method 1: From a Pyrrolopyridine 381
10.22.6.2.1.1.1 Variation 1: From a Halopyrrolopyridine 381
10.22.6.2.1.1.2 Variation 2: Via Nitrosation 382
10.22.6.2.1.1.3 Variation 3: Via Diazonium Coupling 384
10.22.6.2.1.1.4 Variation 4: By Reduction of Nitro Groups 385
10.22.6.2.1.1.5 Variation 5: Via Azidation 388
10.22.6.2.1.2 Method 2: From a 1,2,3-Dithiazole 390
21.17 Synthesis of Amides (Including Peptides) in Continuous-Flow Reactors 393
21.17.1 Microreactors: A Faster Tool for Synthesis Laboratories 394
21.17.2 Amide Formation in Microflow Reactors: Exploring Different Possibilities 395
21.17.2.1 Peptide Synthesis 395
21.17.2.1.1 Method 1: Synthesis of Di- and Tripeptides in Solution 395
21.17.2.1.2 Method 2: Synthesis of Di- and Tripeptides Using Immobilized Reagents 398
21.17.2.1.3 Method 3: ?-Peptide Synthesis Using Fluorine-Activated Amino Acids 400
21.17.2.1.4 Method 4: Peptide Synthesis Using Triphosgene as the Activating Agent 402
21.17.2.1.5 Method 5: Cyclization of Peptides Driven by Microfluidics 405
21.17.2.1.6 Method 6: Analysis of Racemization During Peptide Formation 407
21.17.2.2 Synthesis of Drugs 407
21.17.2.3 Carbonylation Reactions 409
21.17.2.4 Lactam Synthesis 411
21.17.2.5 Dendrimer Synthesis 411
21.17.2.6 Miscellaneous Syntheses of Amides 413
27.19.5 Azomethine Imines (Update 2017) 417
27.19.5.1 Acyclic Azomethine Imines 417
27.19.5.1.1 Synthesis and Applications of Acyclic Azomethine Imines 417
27.19.5.1.1.1 Method 1: In Situ Generation from Hydrazones Followed by [3 +2] Cycloaddition 418
27.19.5.1.1.1.1 Variation 1: In Situ Generation from Hydrazones with Boron Trifluoride– Diethyl Ether Complex and Subsequent Intramolecular [3+ 2] Cycloaddition 418
27.19.5.1.1.1.2 Variation 2: In Situ Generation from Hydrazones with Iodosylbenzene and Subsequent [3 + 2] Cycloaddition with Imines 420
27.19.5.1.1.2 Method 2: In Situ Generation from Aldehydes and Hydrazides 421
27.19.5.1.1.2.1 Variation 1: In Situ Generation from Aldehydes and Hydrazides and Reaction with Nucleophiles 421
27.19.5.1.1.2.2 Variation 2: In Situ Generation from Aldehydes and Hydrazides and Intermolecular [3 + 2] Cycloaddition with Alkynes 423
27.19.5.2 Azomethine Imines with C—N Incorporated in a Ring 424
27.19.5.2.1 Synthesis and Applications of Azomethine Imines with C—N Incorporated in a Ring 424
27.19.5.2.1.1 Method 1: Synthesis of Cyclic Azomethine Imines from 2-(2-Bromoethyl)benzaldehydes and Benzoylhydrazine 424
27.19.5.2.1.2 Method 2: Synthesis of Cyclic Azomethine Imines by Intramolecular Cyclization 426
27.19.5.2.1.2.1 Variation 1: Synthesis of Cyclic Azomethine Imines from Alkynyl Hydrazides 426
27.19.5.2.1.2.2 Variation 2: Synthesis of Cyclic Azomethine Imines from ?,?-Unsaturated N-Trichloroacetyl and N-Trifluoroacetyl Hydrazones 427
27.19.5.2.1.3 Method 3: Synthesis of Cyclic Azomethine Imines from Pyridine Derivatives 428
27.19.5.2.1.3.1 Variation 1: Synthesis of N-Benzoyl- and N-Tosyliminopyridinium Ylides from Pyridines by Amination and Acylation 428
27.19.5.2.1.3.2 Variation 2: Synthesis of N-Tosyliminopyridinium Ylides from Pyridines by Metal-Catalyzed Imination with [N-(4-Toluenesulfonyl)imino]phenyliodinane 430
27.19.5.2.1.4 Method 4: Metal-Catalyzed Synthesis of Cyclic Azomethine Imines from N?-(2-Alkynylbenzylidene) Hydrazides 431
27.19.5.3 Azomethine Imines with N—N Incorporated in a Ring 433
27.19.5.3.1 Synthesis and Applications of Azomethine Imines with N—N Incorporated in a Ring 433
27.19.5.3.1.1 Method 1: Synthesis from Hydrazones and Alkenes 433
35.1.5.1.12 Synthesis of 1-Chloro-n-Heteroatom-Functionalized Alkanes (n ?2) by Addition across C=C Bonds (Update 2017) 439
35.1.5.1.12.1 Method 1: Dichlorination of Alkenes 439
35.1.5.1.12.1.1 Variation 1: Using Manganese(III)/Hydrochloric Acid as the Chlorine Source 439
35.1.5.1.12.1.2 Variation 2: Using an Iodine(III) Reagent as the Chlorine Source 441
35.1.5.1.12.1.3 Variation 3: Using Organic Chlorides as the Chlorine Source 442
35.1.5.1.12.1.4 Variation 4: Using Alkali Metal Chlorides as the Chlorine Source 445
35.1.5.1.12.1.5 Variation 5: Using N-Chlorosuccinimide as the Chlorine Source 447
35.1.5.1.12.1.6 Variation 6: Using a Carbene–Palladium(IV) Chloride Complex as the Chlorine Source 448
35.1.5.1.12.1.7 Variation 7: Organocatalyzed Dichlorination of Alkenes 449
35.1.5.1.12.2 Method 2: Aminochlorination of Alkenes 451
35.1.5.1.12.2.1 Variation 1: Carbon Dioxide Promoted Aminochlorination of Alkenes Using Chloramine-Tas the Source of Chlorine and Nitrogen 452
35.1.5.1.12.2.2 Variation 2: Transition-Metal-Catalyzed Aminochlorination of Alkenes 453
35.1.5.1.12.2.3 Variation 3: Asymmetric Catalytic Aminochlorination of ?,?-Unsaturated ?-Oxo Esters 455
35.1.5.1.12.2.4 Variation 4: Selenium-Catalyzed Chloroamidation of Alkenes 458
35.1.5.1.12.2.5 Variation 5: Photocatalytic Aminochlorination of Alkenes 459
35.1.5.1.12.3 Method 3: Halochlorination of Alkenes 460
35.1.5.1.12.3.1 Variation 1: Iodochlorination of Styrene Using Tetramethylammonium Dichloroiodate 460
35.1.5.1.12.3.2 Variation 2: Copper-Catalyzed Bromochlorination of Styrene Using Tetrabutylammonium Dichlorobromate 461
35.1.5.1.12.3.3 Variation 3: Catalytic Enantioselective Bromochlorination of Allylic Alcohols 461
35.1.5.1.12.4 Method 4: Oxychlorination of Alkenes 463
35.1.5.1.12.4.1 Variation 1: Thiourea Catalyzed Methoxychlorination of Alkenes 463
35.1.5.1.12.4.2 Variation 2: Iodine(III)-Mediated Methoxychlorination of Alkenes 464
35.1.5.1.12.4.3 Variation 3: (Diacetoxyiodo)benzene-Mediated Ethoxychlorination of Enamides 465
35.1.5.1.12.4.4 Variation 4: Organocatalytic Enantioselective Chlorocyclization of Unsaturated Amides 466
35.1.5.1.12.5 Method 5: Chloroselanylation of Alkenes 468
35.1.5.1.12.5.1 Variation 1: ?-Chloroselanylation of Alkenes with N,NDiethylbenzeneselenenamide in the Presence of Phosphoryl Chloride or Thionyl Chloride 468
35.1.5.1.12.5.2 Variation 2: Chloroselanylation of Alkenes with Phenylselenenyl Chloride 469
35.1.5.1.12.6 Method 6: Sulfanylchlorination of Alkenes 470
35.1.5.1.12.7 Method 7: Trihalomethylchlorination of Alkenes 471
35.1.5.1.12.7.1 Variation 1: Trichloromethylchlorination of Alkenes with Trichloromethanesulfonyl Chloride 471
35.1.5.1.12.7.2 Variation 2: Trichloromethylchlorination of Alkenes in Subcritical Carbon Tetrachloride 472
35.1.5.1.12.7.3 Variation 3: Copper/Ruthenium-Catalyzed Trifluoromethylchlorination of Alkenes 473
35.1.5.1.12.8 Method 8: Azidochlorination of Alkenes 474
35.1.5.1.12.8.1 Variation 1: Azidochlorination of Alkenes with Sodium Azide in the Presence of Sodium Hypochlorite and Acetic Acid 474
35.1.5.1.12.9 Method 9: Chlorodiacetonylation of Alkenes 476
35.1.5.1.12.9.1 Variation 1: Chlorodiacetonylation of Cycloalkenes with Acetylacetone and Manganese(III) Acetate in the Presence of Hydrochloric Acid 476
35.2.1.5.7 Synthesis of Bromoalkanes by Substitution of Oxygen Functionalities (Update 2017) 479
35.2.1.5.7.1 Method 1: Substitution of Alcoholic Hydroxy Groups 479
35.2.1.5.7.1.1 Variation 1: Reaction of Alcohols with Oxalyl Chloride and Lithium Bromide under Catalysis by Triphenylphosphine Oxide 479
35.2.1.5.7.1.2 Variation 2: Reaction of Alcohols with Diethyl Bromomalonate and Diphenylsilane under Catalysis of 5-Phenyldibenzophosphole 480
35.2.1.5.7.1.3 Variation 3: Reaction of Primary Alcohols with 7,7-Dichlorocyclohepta- 1,3,5-triene and Tetrabutylammonium Bromide 481
35.2.1.5.7.1.4 Variation 4: Reaction of Alcohols with 2,2-Dibromo- 1,3-dicyclohexylimidazolidine-4,5-dione 482
35.2.1.5.7.1.5 Variation 5: Reaction of Alcohols with tert-Butyl Bromide in the Ionic Liquid 3-Methyl-1-pentylimidazolium Bromide 483
35.2.1.5.7.2 Method 2: Cleavage of Silyl- and Tetrahydropyranyl-Protected Alcohols 484
35.2.1.5.7.2.1 Variation 1: Reaction of Tetrahydropyranyl Ethers with Dibromotriphenylphosphorane 484
35.2.1.5.7.2.2 Variation 2: Reaction of Tetrahydropyranyl and Silyl Ethers with N-Bromosaccharin–Triphenylphosphine 486
35.2.1.5.7.2.3 Variation 3: Reaction of Tetrahydropyranyl and Silyl Ethers in Ionic Liquids 487
35.2.1.5.7.3 Method 3: Substitution of Sulfonyloxy Groups 488
35.2.1.5.7.3.1 Variation 1: Reaction of Arene- or Methanesulfonates with Lithium Bromide in Tetrahydrofuran 488
35.2.1.5.7.3.2 Variation 2: Reaction of Methanesulfonates with Magnesium Bromide– Diethyl Ether Complex 489
35.2.1.5.7.3.3 Variation 3: Reaction of Arene- or Methanesulfonates with the Ionic Liquid 1-Butyl-3-methylimidazolium Bromide 490
35.2.2.2 Propargylic Bromides (Update 2017) 493
35.2.2.2.1 Method 1: Synthesis by Heteroatom Substitution: Substitution of Hydroxy or Tetrahydropyranyl Ether Groups 493
35.2.2.2.1.1 Variation 1: Reaction of Propargylic Alcohols with Phosphorus Tribromide in Perfluorohexane 494
35.2.3.3.3 Synthesis of Benzylic Bromides by Substitution of ?-Bonded Heteroatoms (Update 2017) 497
35.2.3.3.3.1 Method 1: Substitution of Oxygen Functionalities 497
35.2.3.3.3.1.1 Variation 1: Reaction of (Hydroxymethyl)phenols with 2,4,6-Trichloro- 1,3,5-triazine and Sodium Bromide 500
35.2.3.3.3.1.2 Variation 2: Reaction of Benzylic Alcohols with Poly(vinylpyrrolidin- 2-one)–Bromine Complex and Hexamethyldisilane 501
35.2.3.3.3.1.3 Variation 3: Reaction of Benzylic Alcohols with Monolithic Triphenylphosphine Reagent and Carbon Tetrabromide 502
35.2.4.2.3 Synthesis of Allylic Bromides by Substitution of ?-Bonded Heteroatoms (Update 2017) 505
35.2.4.2.3.1 Method 1: Substitution of Other Halogens 505
35.2.4.2.3.1.1 Variation 1: Reaction of Allylic Chlorides with 1,2-Dibromoethane under Rhodium Catalysis 505
35.2.4.2.3.2 Method 2: Substitution of Hydroxy Groups 505
Author Index 509
Abbreviations 527

Abstracts


3.6.16 Gold-Catalyzed Cycloaddition Reactions


D. Qian and J. Zhang

Since about 2000, a “gold rush” has resulted in the development of numerous gold-catalyzed cycloaddition reactions. Such cycloadditions have now become a powerful and privileged method for the construction of carbo- and heterocycles, in particular those complex polycyclic structures featured in diverse natural products. This chapter is organized according to the key reactive gold intermediate that formally participates in the cycloaddition.

Keywords: gold · cycloaddition · carbocycles · heterocycles · carbophilic activation · alkynes · 1,n-dipolar · allenes · alkenylgold · gold · carbenes · benzopyryliums · furylgold species · cycloisomerization · acyloxy migration · alkyne oxidation · nitrene transfer · carbene transfer · diazo decomposition · σ-Lewis acid · enantioselective

4.4.7 Silylboron Reagents


L. B. Delvos and M. Oestreich

This update describes the development of silylboron chemistry since the initial summary in Science of Synthesis by Hemeon and Singer in 2002. In the first part, an overview of the methods to prepare silylboron reagents by nucleophilic substitution, Si─H bond activation, or reductive coupling is provided, and possibilities for further functionalization are presented. The second section comprehensively covers all aspects of the synthetic applications of silylboron compounds, ranging from transition-metal catalysis to transmetalation reactions and Si─B bond activation with Lewis bases. The presented methodologies include silaboration and silylation of unsaturated carbon–carbon bonds, addition and substitution reactions with nucleophilic silicon reagents, silaboration of strained rings under C─C bond cleavage, and Si─B insertion reactions of carbenoids and related compounds.

Keywords: silicon · boron · interelement compounds · main-group chemistry · silaboration · silylation · borylation · difunctionalization · transition-metal catalysis · asymmetric catalysis · oxidative addition · transmetalation · carbenoid insertion · 1,2-addition · 1,4-addition · allylic substitution · propargylic substitution · aromatic substitution

4.4.11 Silyllithium and Related Silyl Alkali Metal Reagents


C. Kleeberg

This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of silyllithium reagents and related compounds of the heavier alkali metals. Various synthetic routes to silyl alkali metal reagents are presented, employing different reaction types including reductive or nucleophilic cleavage of disilanes, reductive metalation of silyl halides, and cleavage of Si─H bonds.

Keywords: silyllithium reagents · lithium compounds · alkali metal compounds · sodium compounds · potassium compounds · reductive cleavage · cleavage reactions · silicon compounds · silanes

4.4.19.4 Silyl Sulfides and Selenides

A. Baker and T. Wirth

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of silyl sulfides and silyl selenides. Various efficient synthetic routes to these compounds are shown. The use of disilyl sulfides and disilyl selenides as versatile reagents in synthesis is highlighted.

Keywords: silyl sulfides · silyl selenides · sulfur · silanes

4.4.24.3 Silyl Cyanides

Y. Nishimoto, M. Yasuda, and A. Baba

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of silyl cyanides. It focuses on the literature published in the period 1997–2015.

Keywords: silanes · silenes · silicon compounds · cyanides · silyl halides

4.4.47 Silanols


A. M. Hardman-Baldwin and A. E. Mattson

This chapter covers synthetic approaches toward and selected applications of organosilanols. The focus is on the literature published in the period 2000–2015.

Keywords: silanols · silanediols · silanes · metal catalysis · organocatalysis · directing groups

10.22.2 Azaindol-1-ols


J.-Y. Mérour and B. Joseph

This chapter presents the little-known azaindol-1-ol family. Methods for the preparation as well as the reactivity of each isomer are covered.

Keywords: azaindol-1-ols · cyclization · reduction · oxidation · O-alkylation

10.22.3 1,3-Dihydroazaindol-2-ones


J.-Y. Mérour and B. Joseph

This chapter reviews the synthesis and reactivity of 1,3-dihydroazaindol-2-ones described in the literature until mid-2014. Synthetic methods and substituent modifications are reviewed for each isomer.

Keywords: 1,3-dihydroazaindol-2-ones · azaoxindoles · cyclization · reduction · rearrangement · radical cyclization · C3-alkylation · C3-aldolization

10.22.4 1,2-Dihydroazaindol-3-ones


J.-Y. Mérour and B. Joseph

This chapter reviews the synthesis and reactivity of 1,2-dihydroazaindol-3-ones (azaindoxyls) and related 1,2-dihydroazaindol-3-yl acetates. Synthetic preparations are reviewed for all isomers except for 1,2-dihydro-3H-pyrrolo[2,3-c]pyridin-3-ones.

Keywords: 1,2-dihydroazaindol-3-ones · azaindoxyls · 1,2-dihydroazaindol-3-yl acetates · cyclization · C2-aldolization

10.22.5 1H-Azaindole-2,3-diones


J.-Y. Mérour and B. Joseph

This chapter reviews the synthesis and reactivity of 1H-azaindole-2,3-diones (azaisatins). It focuses on the literature published until mid-2014. Synthetic preparations are reviewed for 1H-pyrrolo[3,2-b]pyridine-2,3-diones, 1H-pyrrolo[3,2-c]pyridine-2,3-diones, and 1H-pyrrolo[2,3-b]pyridine-2,3-diones.

Keywords: 1H-azaindole-2,3-diones · azaisatins · cyclization · bromination · oxidation · 1H-pyrrolo[3,2-b]pyridine-2,3-diones · 1H-pyrrolo[3,2-c]pyridine-2,3-diones · 1H-pyrrolo[2,3-b]pyridine-2,3-diones

10.22.6 Azaindol-2- and Azaindol-3-amines


J.-Y. Mérour and B. Joseph

This chapter presents methods for the preparation of azaindol-2-amines and azaindol-3-amines published in the literature until mid-2014. Synthetic methods are described for each isomer.

Keywords: azaindol-2-amines · azaindol-3-amines · cyclization · nitrosation · reduction

21.17 Synthesis of Amides (Including Peptides) in Continuous-Flow Reactors


S. Ramesh, P. Cherkupally, T. Govender, H. G. Kruger, B. G. de la Torre, and F. Albericio

Microreactors are powerful tools which present excellent mass- and heat-transfer performance properties for various kinds of chemical reaction. In this chapter, we present a brief introduction to microreactors, followed by an overview of the different microfluidic methods available for the synthesis of amides (including peptides). The range of peptides obtained via microreactor use includes di- to pentapeptides and also some cyclic analogues. Other continuous-flow reactions involving amide-bond formation are also illustrated, including examples of carbonylation, dendrimer preparation, and drug synthesis. The noteworthy features of these microfluidic reactions include shorter reaction times, high yields, and significantly less wastage. They are thus a step toward environmentally friendly, green reactions.

Keywords: amides · continuous-flow reactions · flow chemistry · green chemistry · microfluidics · microreactors · peptides

27.19.5 Azomethine Imines


I. Atodiresei and M. Rueping

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of azomethine imines and focuses on the literature published in the period 2003–2014. As azomethine imines are commonly generated in situ, and subsequently trapped with suitable reaction partners, their applications in synthesis are also presented herein.

Keywords: azomethine imines · cycloaddition reactions · dipolar cycloaddition · hydrazones · intramolecular cycloaddition

35.1.5.1.12 Synthesis of 1-Chloro-n-Heteroatom-Functionalized Alkanes by Addition across C═C Bonds

T. Wirth and F. V. Singh

Chlorination of alkenes is an important synthetic process in organic chemistry. Several approaches for the chlorination of alkenes have been developed, including dichlorination, aminochlorination, halochlorination, oxychlorination, sulfanylchlorination, trihalomethylchlorination, and...

Erscheint lt. Verlag 26.4.2017
Reihe/Serie Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Organic Chemistry • organic reactions • organic synthesis • Organische Chemie • Reactions • reference work • Referenzwerk • Review • Synthese • synthesis
ISBN-10 3-13-241411-5 / 3132414115
ISBN-13 978-3-13-241411-2 / 9783132414112
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95