Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fundamentals of Nuclear Engineering - Brent J. Lewis, E. Nihan Onder, Andrew A. Prudil

Fundamentals of Nuclear Engineering (eBook)

eBook Download: EPUB
2017
John Wiley & Sons (Verlag)
9781119271550 (ISBN)
Systemvoraussetzungen
126,99 inkl. MwSt
(CHF 123,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Fundamental of Nuclear Engineering is derived from over 25 years of teaching undergraduate and graduate courses on nuclear engineering. The material has been extensively class tested and provides the most comprehensive textbook and reference on the fundamentals of nuclear engineering. It includes a broad range of important areas in the nuclear engineering field; nuclear and atomic theory; nuclear reactor physics, design, control/dynamics, safety and thermal-hydraulics; nuclear fuel engineering; and health physics/radiation protection. It also includes the latest information that is missing in traditional texts, such as space radiation. The aim of the book is to provide a source for upper level undergraduate and graduate students studying nuclear engineering.



BRENT J. LEWIS, Royal Military College of Canada
E. NIHAN ONDER, Canadian Nuclear Laboratories
ANDREW A. PRUDIL, Canadian Nuclear Laboratories

BRENT J. LEWIS, Royal Military College of Canada E. NIHAN ONDER, Canadian Nuclear Laboratories ANDREW A. PRUDIL, Canadian Nuclear Laboratories

1 Atomic and Nuclear Theory 9

1.1 Historical Review 9

1.2 Models of the Nucleus 10

2 Nuclear Reactor Design and Physics 53

2.1 Overall Concept and Description of Nuclear Reactors 53

2.2 Neutron Diffusion 71

2.3 Slowing Down of Neutrons 75

2.4 Criticality and the Steady State 86

2.5 Advanced Reactor Physics 96

3 Nuclear Reactor Dynamics and Control 120

3.1 Overview of Reactor Kinetics Behaviour 120

3.2 Point Reactor Model and the Inhour Equation 125

3.3 Reactor Control 138

3.4 Nuclear Fuel Management 146

4 Nuclear Reactor Materials and Fuel Engineering 174

4.1 Nuclear Reactor Materials 174

4.2 Fuel Production 202

4.3 Fuel Element Thermal Performance 218

4.4 Fuel Chemistry 240

4.5 Fuel Restructuring 248

4.6 Fission Product Behaviour 252

4.7 Fuel Performance 285

5 Thermal Hydraulics 314

5.1 Choice of Coolant 314

5.2 Definitions and Simple Two-Phase Flow Relationships 315

5.3 Two-Phase Flow 318

5.4 Pressure Drop 343

5.5 Heat Transfer 380

6 Nuclear Reactor Safety 573

6.1 Reactor Licensing and Regulation 573

6.2 General Principles of Reactor Safety 586

6.3 Engineered Safety Features 590

6.4 Reactor Safety Analysis 597

6.5 Reliability and Risk Assessment 619

6.6 Nuclear Reactor Accidents 624

6.7 Radiation Dose Calculations 640

6.8 Nuclear Emergency Response 659

6.9 Fission Product Release and Severe Core Damage Phenomena 669

7 Health Physics and Radiation Protection 711

7.1 Interaction of Radiation with Matter 711

7.2 Health Physics and Radiation Protection 730

7.3 Biological Effects of Radiation 763

7.4 Radiation Protection 779

7.5 Contamination Treatment 788

7.6 Space Radiation 788

Appendix 1 Physical Constants and Conversion Factors 811

Appendix 2 Table of Atomic Mass Excesses 813

Appendix 3 Some Values of Nuclear Spins and Parities 900

Appendix 4 Reactor Physics Parameters 903

Appendix 5 Physical and Biological Data for Radionuclides 905

Appendix 6 Cross-Sections of Some Radionuclides 907

Appendix 7 Properties of Elements and Some Molecules 909

Appendix 8 Isotopic Cross-Sections 913

Appendix 9 Direct and Cumulative Thermal Fission Product Yields for Various Fissile Isotopes 926

Index 943

Prologue


Introduction


Nuclear technology was first developed in the 1940s during research on weapons production during the World War II. Attention turned to commercial nuclear power in the 1950s. Today, nuclear energy is an important source of electricity production for three main reasons: (i) supply, (ii) environmental footprint (i.e., climate change) and (iii) economics.

As shown in Figure p.1, nuclear power provides about 11% of the global electricity needs. In particular, as of 2015, there have been 16 000 reactor years of experience with 436 commercial power reactors in 31 countries that supply 378 000 MW (electrical) of total capacity; in addition, 67 nuclear power reactors are also under construction with 166 reactors being planned (Table P.1). Fifty-six countries operate a total of 240 research reactors as a source of neutrons for scientific research and for the production of medical and industrial isotopes. Moreover, there are about 180 nuclear reactors that power ships and submarines.

Figure p.1 World electricity production in 2012. Source: World nuclear association.

From 1990 to 2010, the world electricity (e) capacity rose by 57 GWe (17.75%), with a rise in electricity produced from nuclear power of 755 TWh (40%), as shown in Figure p.2, due to new plant construction (36%), uprating of other plants (7%) and an increase in availability of plants (57%). The USA itself accounts for nearly one third of the world's nuclear electricity (see the first column of Table P.1), where nuclear power plant performance has increased over the past twenty years with capacity factors over 90% in five of the seven years up to 2013. In 2011 and 2012, both capacity and output diminished, with cutbacks in Germany and Japan (i.e., in Japan dropping from 13 TWh in 2010 to 0 TWh in 2015 as seen in Table P.1) following the Fukushima reactor accident (see Chapter 6).

Nuclear power is important because of its relatively low environmental footprint in terms of climate change. The lifecycle greenhouse gas (GHG) emissions from different forms of electricity generation for all phases of the process including construction, operation, and decommissioning are shown in Figure p.3 based on the analysis of twenty studies. This analysis shows that generating electricity from fossil fuels results in much greater emissions than that from nuclear or renewable generation.

Data for costs in the United States for various sources of electricity production from 1995 to 2012 (Figure p.4) show nuclear generation (i.e., for the fuel plus operation and maintenance) at 2.40 cents/kWh, as compared with coal at 3.27 cents/kWh and gas at 3.40 cents/kWh. These costs exclude indirect costs and capital costs that are plant/utility specific and also depend on the age of the plant.

A finish study for projected electricity costs in 2003 suggested nuclear production at €2.37 cents/kWh, coal at €2.63 cents/kWh and natural gas at €3.22 cents/kWh (Figure p.5). This study assumed a 91% capacity factor, 5% interest rate and 40-year plant life. The relative effects of capital and fuel costs are depicted. Nuclear production specifically has a relatively high capital cost that depends importantly on the financing costs and length of time for construction. On the other hand, the fuel costs are much lower, so that once a nuclear plant is built its costs are more predictable compared to gas or coal. In addition, a carbon tax can impact costs, that is, with carbon emissions trading at €20/t CO2, the electricity costs for coal and gas increase to €4.25 and 3.92 cents/kWh, respectively. Finally, in 2015, a report from the Institute for Energy Research on the levelized cost of electricity from existing generation resources suggested nuclear production at slightly over $90/MWh, compared with coal at almost $100/MWh and gas just over $70/MWh.

Table P.1 World nuclear power reactors and uranium requirements

Nuclear electricity generation 2014 Reactors operable August 2015 Reactors under construction August 2015 Reactors planned August 2015 Reactors proposed August 2015 Uranium required 2015
Country Billion kWh (or TWh) % electricity No. MWe net No. MWe gross No. MWe gross No. MWe gross tonnes U
Argentina 5.3 4.0 3 1627 1 27 2 1950 2 1300 215
Armenia 2.3 30.7 1 376 0 0 1 1060 88
Bangladesh 0 0 0 0 0 0 2 2400 0 0 0
Belarus 0 0 0 0 2 2388 0 0 2 2400 0
Belgium 32.1 47.5 7 5943 0 0 0 0 0 0 1017
Brazil 14.5 2.9 2 1901 1 1405 0 0 4 4000 326
Bulgaria 15.0 31.8 2 1906 0 0 1 950 0 0 324
Canada 98.6 16.8 19 13 553 0 0 2 1500 3 3800 1784
Chile 0 0 0 0 0 0 0 0 4 4400 0
China 123.8 2.4 26 23 144 25 27 393 43 49 970 136 153 000 8161
Czech Republic 28.6 35.8 6 3904 0 0 2 2400 1 1200 566
Egypt 0 0 0 0 0 0 2 2400 2 2400 0
Finland 22.6 34.6 4 2741 1 1700 1 1200 1 1500 751
France 418.0 76.9 58 63 130 1 1750 0 0 1 1750 9230
Germany 91.8 15.8 8 10 728 0 0 0 0 0 0 1889
Hungary 14.8 53.6 4 1889 0 0 2 2400 0 0 357
India 33.2 3.5 21 5302 6 4300 22 21 300 35 40 000 1579
Indonesia 0 0 0 0 0 0 1 30 4 4000 0
Iran 3.7 1.5 1 915 0 0 2 2000 7 6300 176
Israel 0 0 0 0 0 0 0 0 1 1200 0
Italy 0 0 0 0 0 0 0 0 0 0 0
Japan 0 0 43 40 480 3 3036 9 12 947 3 4145 2549
Jordan 0 0 0 0 0 0 2 2000 0
Kazakhstan 0 0 0 0 0 0 2 600 2 600 0
Korea DPR (North) 0 0 0 0 0 0 0 0 1 950 0
Korea RO (South) 149.2 30.4 24 21 677 4 5600 8 11...

Erscheint lt. Verlag 31.3.2017
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Advanced Nuclear Power Reactors • atomic theory • CANDU reactor • fuel chemistry • fuel damage • fuel engineering • Fundamental of Nuclear Engineering • fundamentals of nuclear engineering • Generation IV Designs • Health physics • Light Water Reactors • LWRs • Maschinenbau • mechanical engineering • Nuclear Engineering • nuclear fuel engineering • Nuclear Fuel Fabrication • nuclear physics • Nuclear Reactor Control • Nuclear reactor design • nuclear reactor dynamics • Nuclear Reactor Physics • Nuclear Reactor Safety • nuclear theory • Radiation protection • Reactor Accidents • Reactor Design • reactor operation • Reactor Physics • Reactor Safety • Reactor theory • Small Nuclear Power Reactors • SMRs • Space radiation • thermal-hydraulics • thermodynamics • Thermodynamik
ISBN-13 9781119271550 / 9781119271550
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
From Energy and Entropy to Heat Transfer and Phase Transitions

von Rainer Müller

eBook Download (2025)
De Gruyter (Verlag)
CHF 53,65