Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geological Storage of CO2 in Deep Saline Formations -

Geological Storage of CO2 in Deep Saline Formations (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XIX, 554 Seiten
Springer Netherlands (Verlag)
978-94-024-0996-3 (ISBN)
Systemvoraussetzungen
117,69 inkl. MwSt
(CHF 114,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. 

This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods.

Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. 

Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.


Auli Niemi is a Professor of Groundwater Modeling at the Department of Earth Sciences at Uppsala University, Sweden, where she leads geohydrology research.  Her earlier positions include e.g. Research Professor and Leading Research Scientist at Technical Research Centre of Finland, Visiting Professor at the Royal Institute of Technology, Stockholm and Research Associate at Lawrence Berkeley National Laboratory, USA. Her research involves the modeling and characterization of flow and transport in porous and fractured media, with a special interest in multiphase and coupled processes as well as characterizing heterogeneity effects. She has published over 140 journal articles and reports, and was the coordinator of the large-scale integrative EU FP7 project MUSTANG (2009-2014), which formed the basis for this book. She has also held key positions in other recent and ongoing EU FP7 projects on CO2 geological storage, including the TRUST and CO2QUEST (both 2012-2017) projects. 
 
Jacob Bear is a Professor Emeritus at the Technion-Israel Institute of Technology, where he held the Albert and Anne Mansfield Chair in Water Resources as well as several administrative positions including Vice President for Academic Affairs. He was also the Dean of Engineering at the Kinneret Academic College in the Jordan Valley. Professor Bear is involved in research, consultancy and teaching in the area of groundwater flows, contaminant transport, and seawater intrusion in aquifers. He holds Honorary Doctorates from Delft University of Technology (1978) and from ETH Zurich (1988), and is a Fellow of the American Geophysical Union (AGU). His work has been published in five books and in over 200 articles. He was the founder of the International Journal on Transport in Porous Media, published by Springer, and served as its Editor (1985-2010).
 
Jacob Bensabat received his PhD in 1986 from the Technion-Israeli Institute of Technology. Following post-doctoral research at MIT, his main focus has been on geo-hydrological consultancy, particularly the analysis and modeling of large-scale hydrogeological problems, including groundwater resources management, pollution control, design of remediation schemes and analysis of seawater intrusion processes. He is presently leading a CO2 injection experiment at Heletz (Israel) as part of the MUSTANG project and TRUST projects. He is currently the coordinator of the EU-FP7 TRUST project (2012-2017).


This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods.Geological storage of CO2 is widely considered to be a key technology capable ofsubstantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.

Auli Niemi is a Professor of Groundwater Modeling at the Department of Earth Sciences at Uppsala University, Sweden, where she leads geohydrology research.  Her earlier positions include e.g. Research Professor and Leading Research Scientist at Technical Research Centre of Finland, Visiting Professor at the Royal Institute of Technology, Stockholm and Research Associate at Lawrence Berkeley National Laboratory, USA. Her research involves the modeling and characterization of flow and transport in porous and fractured media, with a special interest in multiphase and coupled processes as well as characterizing heterogeneity effects. She has published over 140 journal articles and reports, and was the coordinator of the large-scale integrative EU FP7 project MUSTANG (2009-2014), which formed the basis for this book. She has also held key positions in other recent and ongoing EU FP7 projects on CO2 geological storage, including the TRUST and CO2QUEST (both 2012-2017) projects. Jacob Bear is a Professor Emeritus at the Technion-Israel Institute of Technology, where he held the Albert and Anne Mansfield Chair in Water Resources as well as several administrative positions including Vice President for Academic Affairs. He was also the Dean of Engineering at the Kinneret Academic College in the Jordan Valley. Professor Bear is involved in research, consultancy and teaching in the area of groundwater flows, contaminant transport, and seawater intrusion in aquifers. He holds Honorary Doctorates from Delft University of Technology (1978) and from ETH Zurich (1988), and is a Fellow of the American Geophysical Union (AGU). His work has been published in five books and in over 200 articles. He was the founder of the International Journal on Transport in Porous Media, published by Springer, and served as its Editor (1985-2010).Jacob Bensabat received his PhD in 1986 from the Technion-Israeli Institute of Technology. Following post-doctoral research at MIT, his main focus has been on geo-hydrological consultancy, particularly the analysis and modeling of large-scale hydrogeological problems, including groundwater resources management, pollution control, design of remediation schemes and analysis of seawater intrusion processes. He is presently leading a CO2 injection experiment at Heletz (Israel) as part of the MUSTANG project and TRUST projects. He is currently the coordinator of the EU-FP7 TRUST project (2012-2017). 

CO2 storage in deep geological formations.- The concept.- Field characterization techniques.- Processes occurring during injection, spreading and storage of CO2.- Mathematical models.- Laboratory experiments.- Natural analogue studies.- Numerical modeling of CO2 geological storage.- Field sites and field studies.- Performance assessment of CO2 storage sites.- Legislation and regulations.

Erscheint lt. Verlag 24.2.2017
Reihe/Serie Theory and Applications of Transport in Porous Media
Theory and Applications of Transport in Porous Media
Zusatzinfo XIX, 554 p. 154 illus., 115 illus. in color.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Geophysik
Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte CO2 sequestration and storage • Geological storage in salt formations • hydrogeology • Measurement techniques for CO2 sequestration • Modeling for CO2 sequestration • Site chacterization for CO2 sequestration
ISBN-10 94-024-0996-3 / 9402409963
ISBN-13 978-94-024-0996-3 / 9789402409963
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich