Optics, Light and Lasers (eBook)
Wiley-VCH Verlag GmbH & Co. KGaA
9783527685516 (ISBN)
Written for newcomers to the topic who will benefit from the author's ability to explain difficult theories and effects in a straightforward and readily comprehensible way.
Dieter Meschede studied physics in several places including Hannover, Cologne, Boulder, and Munich. He has been professor of experimental physics since 1990. At the University of Bonn his current scientific interests are directed towards light-matter interactions at the most elementary level, i.e. with single atoms and single photons for applications in quantum technology.
Dieter Meschede studied physics in several places including Hannover, Cologne, Boulder, and Munich. He has been professor of experimental physics since 1990. At the University of Bonn his current scientific interests are directed towards light-matter interactions at the most elementary level, i.e. with single atoms and single photons for applications in quantum technology.
Cover 1
Title Page 5
Copyright 6
Contents 7
Preface 21
Chapter 1 Light Rays 23
1.1 Light Rays in Human Experience 23
1.2 Ray Optics 24
1.3 Reflection 24
1.3.1 Planar Mirrors 24
1.4 Refraction 25
1.4.1 Law of Refraction 25
1.4.2 Total Internal Reflection 26
1.5 Fermat's Principle: The Optical Path Length 27
1.5.1 Inhomogeneous Refractive Index 28
1.6 Prisms 30
1.6.1 Dispersion 31
1.7 Light Rays in Wave Guides 32
1.7.1 Ray Optics in Wave Guides 33
1.7.2 Step-Index Fibers 34
1.7.3 Gradient-Index Fibers 35
1.8 Lenses and Curved Mirrors 37
1.8.1 Lenses 37
1.8.2 Concave Mirrors 38
1.9 Matrix Optics 39
1.9.1 Paraxial Approximation 39
1.9.2 ABCD Matrices 40
1.9.3 Lenses in Air 41
1.9.4 Lens Systems 43
1.9.5 Periodic Lens Systems 44
1.9.6 ABCD Matrices for Wave Guides 45
1.10 Ray Optics and Particle Optics 45
Problems 47
Chapter 2 Wave Optics 51
2.1 Electromagnetic Radiation Fields 51
2.1.1 Static Fields 52
2.1.2 Polarizable and Magnetizable Media 52
2.1.3 Dynamic Fields 53
2.1.4 Fourier Components 54
2.1.5 Maxwell's Equations for Optics 55
2.1.6 Continuity Equation and Superposition Principle 55
2.1.7 The Wave Equation 55
2.1.8 Energy Density, Intensity, and the Poynting Vector of Electromagnetic Waves 57
2.2 Wave Types 59
2.2.1 Planar Waves 59
2.2.2 Spherical Waves 60
2.2.3 Dipole Waves 61
2.3 Gaussian Beams 62
2.3.1 The Gaussian Principal Mode or TEM00 Mode 63
2.3.2 The ABCD Rule for Gaussian Modes 66
2.3.3 Paraxial Wave Equation 68
2.3.4 Higher Gaussian Modes 69
2.3.5 Creation of Gaussian Modes 71
2.3.6 More Gaussian Paraxial Beams 72
2.4 Vector Light: Polarization 72
2.4.1 Jones Vectors 74
2.4.2 Stokes Parameters 74
2.4.3 Polarization State and Poincaré Sphere 75
2.4.4 Jones Matrices, Polarization Control, and Measurement 76
2.4.5 Polarization and Projection 78
2.4.6 Polarization of Light Beams with Finite Extension 79
2.5 Optomechanics: Mechanical Action of Light Beams 80
2.5.1 Radiation Pressure 80
2.5.2 Angular Momentum of Light Beams 81
2.5.3 Beth's Experiment 82
2.5.4 Optical Angular Momentum (OAM) 82
2.6 Diffraction 85
2.6.1 Scalar Diffraction Theory 86
2.7 Fraunhofer Diffraction 89
2.7.1 Optical Fourier Transformation, Fourier Optics 92
2.8 Fresnel Diffraction 93
2.8.1 Babinet's Principle 96
2.8.2 Fresnel Zones and Fresnel Lenses 97
2.9 Beyond Gaussian Beams: Diffraction Integral and ABCD Formalism 99
Problems 99
Chapter 3 Light Propagation in Matter: Interfaces, Dispersion, and Birefringence 105
3.1 Dielectric Interfaces 105
3.1.1 Refraction and Reflection at Glass Surfaces 106
3.1.2 Total Internal Reflection (TIR) 109
3.1.3 Complex Refractive Index 110
3.2 Interfaces of Conducting Materials 111
3.2.1 Wave Propagation in Conducting Materials 112
3.2.2 Metallic Reflection 113
3.2.3 Polaritons and Plasmons 114
3.3 Light Pulses in Dispersive Materials 116
3.3.1 Pulse Distortion by Dispersion 120
3.3.2 Solitons 123
3.4 Anisotropic Optical Materials 125
3.4.1 Birefringence 125
3.4.2 Ordinary and Extraordinary Light Rays 128
3.4.3 Construction of Retarder Plates 129
3.4.4 Birefringent Polarizers 131
3.5 Optical Modulators 132
3.5.1 Pockels Cell and Electro-optical Modulators 132
3.5.2 Liquid Crystal Modulators 134
3.5.3 Spatial Light Modulators 135
3.5.4 Acousto-Optical Modulators 136
3.5.5 Faraday Rotators 139
3.5.6 Optical Isolators and Diodes 140
Problems 141
Chapter 4 Light Propagation in Structured Matter 143
4.1 Optical Wave Guides and Fibers 144
4.1.1 Step-Index Fibers 145
4.1.2 Graded-Index Fiber 151
4.1.3 Fiber Absorption 152
4.1.4 Functional Types and Applications of Optical Fibers 152
4.2 Dielectric Photonic Materials 154
4.2.1 Photonic Crystals 154
4.2.2 Bloch Waves 156
4.2.3 Photonic Bandgap in 1D 157
4.2.4 Bandgaps in 2D and 3D 159
4.2.5 Defects and Defect Modes 161
4.2.6 Photonic Crystal Fibers (PCFs) 163
4.3 Metamaterials 165
4.3.1 Dielectric (Plasmonic) Metamaterials 165
4.3.2 Magnetic Metamaterials and negative index of refraction 166
4.3.3 Constructing Magnetic Metamaterials 167
4.3.4 Applications of Metamaterials: The Perfect Lens 168
Problems 169
Chapter 5 Optical Images 171
5.1 Simple Lenses 171
5.2 The Human Eye 173
5.3 Magnifying Glass and Eyepiece 174
5.4 Microscopes 176
5.4.1 Resolving Power of Microscopes 177
5.4.2 Analyzing and Improving Contrast 181
5.5 Scanning Microscopy Methods 183
5.5.1 Depth of Focus and Confocal Microscopy 183
5.5.2 Scanning Near-Field Optical Microscopy (SNOM) 184
5.5.3 Overcoming the Rayleigh-Abbe Resolution Limits with Light 185
5.6 Telescopes 188
5.6.1 Theoretical Resolving Power of a Telescope 188
5.6.2 Magnification of a Telescope 189
5.6.3 Image Distortions of Telescopes 190
5.7 Lenses: Designs and Aberrations 191
5.7.1 Types of Lenses 192
5.7.2 Aberrations: Seidel Aberrations 194
5.7.3 Chromatic Aberration 198
Problems 199
Chapter 6 Coherence and Interferometry 203
6.1 Young's Double Slit 203
6.2 Coherence and Correlation 204
6.2.1 Correlation Functions 205
6.2.2 Beam Splitter 206
6.3 The Double-Slit Experiment 207
6.3.1 Transverse Coherence 208
6.3.2 Optical or Diffraction Gratings 210
6.3.3 Monochromators 212
6.4 Michelson interferometer: longitudinal coherence 213
6.4.1 Longitudinal or Temporal Coherence 214
6.4.2 Mach-Zehnder and Sagnac Interferometers 217
6.5 Fabry-Pérot Interferometer 219
6.5.1 Free Spectral Range, Finesse, and Resolution 222
6.6 Optical Cavities 224
6.6.1 Damping of Optical Cavities 224
6.6.2 Modes and Mode Matching 225
6.6.3 Resonance Frequencies of Optical Cavities 226
6.6.4 Symmetric Optical Cavities 227
6.6.5 Optical Cavities: Important Special Cases 227
6.7 Thin Optical Films 230
6.7.1 Single-Layer Films 230
6.7.2 Multilayer Films 231
6.8 Holography 232
6.8.1 Holographic Recording 233
6.8.2 Holographic Reconstruction 234
6.8.3 Properties 236
6.9 Laser Speckle (Laser Granulation) 236
6.9.1 Real and Virtual Speckle Patterns 237
6.9.2 Speckle Grain Sizes 237
Problems 238
Chapter 7 Light and Matter 241
7.1 Classical Radiation Interaction 242
7.1.1 Lorentz Oscillators 242
7.1.2 Macroscopic Polarization 246
7.2 Two-Level Atoms 251
7.2.1 Are There Any Atoms with Only Two Levels? 251
7.2.2 Dipole Interaction 252
7.2.3 Optical Bloch Equations 254
7.2.4 Pseudo-spin, Precession, and Rabi Nutation 256
7.2.5 Microscopic Dipoles and Ensembles 257
7.2.6 Optical Bloch Equations with Damping 257
7.2.7 Steady-State Inversion and Polarization 258
7.3 Stimulated and Spontaneous Radiation Processes 261
7.3.1 Stimulated Emission and Absorption 263
7.3.2 Spontaneous Emission 264
7.4 Inversion and Amplification 264
7.4.1 Four-, Three-, and Two-Level Laser Systems 265
7.4.2 Generation of Inversion 265
7.4.3 Optical Gain 266
7.4.4 The Historical Path to the Laser 267
Problems 268
Chapter 8 The Laser 271
8.1 The Classic System: The He-Ne Laser 273
8.1.1 Construction 273
8.1.2 Mode Selection in the He-Ne Laser 276
8.1.3 Gain Profile, Laser Frequency, and Spectral Holes 277
8.1.4 The Single-Frequency Laser 278
8.1.5 Laser Power 279
8.1.6 Spectral Properties of the He-Ne Laser 280
8.1.7 Optical Spectral Analysis 281
8.1.8 Applications of the He-Ne Laser 283
8.2 Other Gas Lasers 283
8.2.1 The Argon Laser 283
8.2.2 Metal-Vapor Lasers 285
8.2.3 Molecular Gas Lasers 286
8.3 The Workhorses: Solid-State Lasers 290
8.3.1 Optical Properties of Laser Crystals 290
8.3.2 Rare-Earth Ions 291
8.4 Selected Solid-State Lasers 293
8.4.1 The Neodymium Laser 293
8.4.2 Applications of Neodymium Lasers 295
8.4.3 Erbium Lasers, Erbium-Doped Fiber Amplifiers (EDFAs) 297
8.4.4 Fiber Lasers 298
8.4.5 Ytterbium Lasers: Higher Power with Thin-Disc and Fiber Lasers 300
8.5 Tunable Lasers with Vibronic States 301
8.5.1 Transition-Metal Ions 301
8.5.2 Color Centers 302
8.5.3 Dyes 303
8.6 Tunable Ring Lasers 303
Problems 305
Chapter 9 Laser Dynamics 307
9.1 Basic Laser Theory 307
9.1.1 The Resonator Field 307
9.1.2 Damping of the Resonator Field 308
9.1.3 Steady-State Laser Operation 310
9.2 Laser Rate Equations 313
9.2.1 Laser Spiking and Relaxation Oscillations 314
9.3 Threshold-Less Lasers and Micro-lasers 317
9.4 Laser Noise 320
9.4.1 Amplitude and Phase Noise 320
9.4.2 The Microscopic Origin of Laser Noise 323
9.4.3 Laser Intensity Noise 324
9.4.4 Schawlow-Townes Linewidth 326
9.5 Pulsed Lasers 327
9.5.1 "Q-Switch" 327
9.5.2 Mode Locking 328
9.5.3 Methods of Mode Locking 331
9.5.4 Measurement of Short Pulses 334
9.5.5 Tera- and Petawatt Lasers 334
9.5.6 Coherent White Light 335
9.5.7 Frequency Combs 337
Problems 338
Chapter 10 Semiconductor Lasers 341
10.1 Semiconductors 341
10.1.1 Electrons and Holes 341
10.1.2 Doped Semiconductors 342
10.1.3 pn Junctions 343
10.2 Optical Properties of Semiconductors 344
10.2.1 Semiconductors for Optoelectronics 344
10.2.2 Absorption and Emission of Light 345
10.2.3 Inversion in the Laser Diode 347
10.2.4 Small Signal Gain 349
10.2.5 Homo- and Heterostructures 351
10.3 The Heterostructure Laser 352
10.3.1 Construction and Operation 352
10.3.2 Spectral Properties 354
10.3.3 Quantum Films, Quantum Wires, and Quantum Dots 356
10.3.4 Quantum Cascade Lasers 360
10.4 Dynamic Properties of Semiconductor Lasers 361
10.4.1 Modulation Properties 362
10.4.2 Linewidth of the Semiconductor Laser 363
10.4.3 Injection Locking 364
10.5 Laser Diodes, Diode Lasers, and Laser Systems 367
10.5.1 Tunable Diode Lasers (Grating Tuned Lasers) 367
10.5.2 DFB and DBR Lasers and VCSEL 368
10.6 High-Power Laser Diodes 370
Problems 372
Chapter 11 Sensors for Light 375
11.1 Characteristics of Optical Detectors 376
11.1.1 Sensitivity 376
11.1.2 Quantum Efficiency 376
11.1.3 Signal-to-Noise Ratio 377
11.1.4 Noise Equivalent Power (NEP) 378
11.1.5 Detectivity "D-Star" 378
11.1.6 Rise Time 378
11.1.7 Linearity and Dynamic Range 379
11.2 Fluctuating Optoelectronic Quantities 379
11.2.1 Dark Current Noise 379
11.2.2 Intrinsic Amplifier Noise 380
11.2.3 Measuring Amplifier Noise 380
11.3 Photon Noise and Detectivity Limits 381
11.3.1 Photon Statistics of Coherent Light Fields 382
11.3.2 Photon Statistics in Thermal Light Fields 383
11.3.3 Shot Noise Limit and "Square-Law" Detectors 385
11.4 Thermal Detectors 386
11.4.1 Thermopiles 387
11.4.2 Bolometers 388
11.4.3 Pyroelectric Detectors 388
11.4.4 The Golay Cell 388
11.5 Quantum Sensors I: Photomultiplier Tubes 388
11.5.1 The Photoelectric Effect 388
11.5.2 Photocathodes 389
11.6 Quantum Sensors II: Semiconductor Sensors 392
11.6.1 Photoconductors 392
11.6.2 Photodiodes or Photovoltaic Detectors 394
11.6.3 Avalanche Photodiodes 396
11.7 Position and Image Sensors 396
11.7.1 Photo-Capacitors 397
11.7.2 CCD Sensors 397
11.7.3 Image Intensifiers 399
Problems 399
Chapter 12 Laser Spectroscopy and Laser Cooling 401
12.1 Laser-Induced Fluorescence (LIF) 401
12.2 Absorption and Dispersion 402
12.2.1 Saturated Absorption 403
12.3 The Width of Spectral Lines 404
12.3.1 Natural Width and Homogeneous Linewidth 405
12.3.2 Doppler Broadening and Inhomogeneous Linewidth 405
12.3.3 Pressure Broadening 407
12.3.4 Time-of-Flight (TOF) Broadening 408
12.4 Doppler-Free Spectroscopy 410
12.4.1 Spectroscopy with Molecular Beams 410
12.4.2 Saturation Spectroscopy 410
12.4.3 Two-Photon Spectroscopy 413
12.5 Light Forces 416
12.5.1 Radiation Pressure in a Propagating Wave 417
12.5.2 Damping Forces 419
12.5.3 Heating Forces, Doppler Limit 421
12.5.4 Dipole Forces in a Standing Wave 423
12.5.5 Generalization 425
12.5.6 Optical Tweezers 425
Problems 426
Chapter 13 Coherent Light-Matter Interaction 429
13.1 Weak Coupling and Strong Coupling 429
13.1.1 AC Stark Effect and Dressed-Atom Model 430
13.2 Transient Phenomena 432
13.2.1 ? Pulses 433
13.2.2 Free Induction Decay 433
13.2.3 Photon Echo 435
13.2.4 Quantum Beats 436
13.2.5 Wave Packets 437
Chapter 14 Photons: An Introduction to Quantum Optics 439
14.1 Does Light Exhibit Quantum Character? 439
14.2 Quantization of the Electromagnetic Field 440
14.3 Spontaneous Emission 443
14.3.1 Vacuum Fluctuations Perturb Excited Atoms 444
14.3.2 Weisskopf and Wigner Theory of Spontaneous Emission 445
14.3.3 Suppression of Spontaneous Emission 447
14.3.4 Interpretation of Spontaneous Emission 448
14.3.5 Open Quantum Systems and Reservoirs 448
14.4 Resonance Fluorescence 449
14.4.1 The Spectrum of Resonance Fluorescence 449
14.4.2 Spectra and Correlation Functions 450
14.4.3 Spectra and Quantum Fluctuations 453
14.4.4 Coherent and Incoherent Contributions of Resonance Fluorescence 454
14.5 Light Fields in Quantum Optics 457
14.5.1 Fluctuating Light Fields 457
14.5.2 Quantum Properties of Important Light Fields 460
14.5.3 Photon Number Distribution 463
14.5.4 Bunching and Anti-bunching 465
14.6 Two-Photon Optics 466
14.6.1 Spontaneous Parametric Fluorescence, SPDC Sources 467
14.6.2 Hong-Ou-Mandel Interferometer 468
14.7 Entangled Photons 470
14.7.1 Entangled States According to Einstein-Podolsky-Rosen 470
14.7.2 Bell's Inequality 472
14.7.3 Bell's Inequality and Quantum Optics 473
14.7.4 Polarization-Entangled Photon Pairs 474
14.7.5 A Simple Bell Experiment 475
Problems 477
Chapter 15 Nonlinear Optics I: Optical Mixing Processes 479
15.1 Charged Anharmonic Oscillators 479
15.2 Second-Order Nonlinear Susceptibility 481
15.2.1 Mixing Optical Fields: Three-Wave Mixing 481
15.2.2 Symmetry Properties of Susceptibility 483
15.2.3 Two-Wave Polarization 484
15.2.4 Crystal Symmetry 485
15.2.5 Effective Value of the Nonlinear $d$ Coefficient 485
15.3 Wave Propagation in Nonlinear Media 486
15.3.1 Coupled Amplitude Equations 486
15.3.2 Coupled Amplitudes for Three-Wave Mixing 487
15.3.3 Energy Conservation 488
15.4 Frequency Doubling 488
15.4.1 Weak Conversion 489
15.4.2 Strong Conversion 490
15.4.3 Phase Matching in Nonlinear and Birefringent Crystals 491
15.4.4 Frequency Doubling with Gaussian Beams 494
15.4.5 Resonant Frequency Doubling 496
15.4.6 Quasi-phase Matching 498
15.5 Sum and Difference Frequency 499
15.5.1 Sum Frequency 499
15.5.2 Difference Frequency and Parametric Gain 500
15.6 Optical Parametric Oscillators 501
Problems 504
Chapter 16 Nonlinear Optics II: Four-Wave Mixing 507
16.1 Frequency Tripling in Gases 507
16.2 Nonlinear Refraction Coefficient (Optical Kerr Effect) 509
16.2.1 Self-Focusing 510
16.2.2 Phase Conjugation 513
16.3 Self-Phase Modulation 516
Problems 517
Appendix A Mathematics for Optics 519
A.1 Spectral Analysis of Fluctuating Measurable Quantities 519
A.1.1 Correlations 522
A.1.2 Schottky Formula 523
A.2 Time Averaging Formula 524
Appendix B Supplements in Quantum Mechanics 525
B.1 Temporal Evolution of a Two-State System 525
B.1.1 Two-Level Atom 525
B.1.2 Temporal Development of Pure States 525
B.2 Density Matrix Formalism 526
B.3 Density of States 527
Bibliography 529
Index 541
EULA 551
| Erscheint lt. Verlag | 21.2.2017 |
|---|---|
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Optik |
| Technik | |
| Schlagworte | Chemie • Chemistry • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Laser • materials characterization • Materials Science • Materialwissenschaften • Optical Communications • Optics & Photonics • Optik • Optik u. Photonik • Optische Nachrichtentechnik • photonics, optics, lasers, plasmonics, nano-optics • Photonik • Physics • Physik • spectroscopy • Spektroskopie • Werkstoffprüfung |
| ISBN-13 | 9783527685516 / 9783527685516 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich