Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles (eBook)

Ottorino Veneri (Herausgeber)

eBook Download: PDF
2016 | 1st ed. 2017
XXIV, 307 Seiten
Springer International Publishing (Verlag)
978-3-319-43651-7 (ISBN)

Lese- und Medienproben

Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production.

This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy. 


Ottorino Veneri is Scientific Director of Operative Units at the National Research Council of Italy's Istituto Motori for numerous research projects related to renewable energy, energy storage, and energy efficiency. Dr. Veneri was awarded his PhD by the University of Naples in 2000. His main fields of interest are the electric drives for transportation systems, electric energy converters, electric energy storage systems and power sources with hydrogen fuel cells. He is co-author of 1 book published by Springer, 2 chapters in collected volumes, and more than 50 papers published in international journals and conference proceedings.

Ottorino Veneri is Scientific Director of Operative Units at the National Research Council of Italy's Istituto Motori for numerous research projects related to renewable energy, energy storage, and energy efficiency. Dr. Veneri was awarded his PhD by the University of Naples in 2000. His main fields of interest are the electric drives for transportation systems, electric energy converters, electric energy storage systems and power sources with hydrogen fuel cells. He is co-author of 1 book published by Springer, 2 chapters in collected volumes, and more than 50 papers published in international journals and conference proceedings.

Acknowledgments 5
Contents 6
About the Authors 8
Introduction 21
Part I: Overview of Technologies 23
Chapter 1: Vehicle Electrification: Main Concepts, Energy Management, and Impact of Charging Strategies 24
1.1 Introduction 24
1.2 Vehicle Electrification: Introduction and Definitions 26
1.2.1 From HEVs to Plug-In Hybrid Electric Vehicles 26
1.2.2 PHEV Energy Management 29
1.2.3 Full-Electric Vehicles 32
1.2.4 PEV Charging Options and Infrastructure 35
1.3 Energy, Economic, and Environmental Considerations 37
1.4 Impacts of PEV Charging on the Power Grid 40
1.4.1 General Considerations 40
1.4.2 Effects of PEV Charging on Battery Lifetime 41
1.4.3 Effects of PEV Charging on Generation and Load Profile 41
1.4.4 Effects of PEV Charging on Distribution Networks 46
1.5 The Role of Smart Charging Technologies and Applications 51
1.5.1 General Considerations 51
1.5.2 Vehicle Electrification, Impacts on Investments, and Interdependencies in the Power Sector Including Renewables 54
1.6 Conclusions 54
References 55
Chapter 2: AC and DC Microgrid with Distributed Energy Resources 59
2.1 AC Microgrid 59
2.2 Introduction to DC Microgrids 61
2.2.1 DC Distributed Sources 61
2.2.2 The Configuration of DC Microgrids 61
2.2.3 Comparison of AC and DC Microgrids 62
2.3 The Control and Operation of DC Microgrids 65
2.3.1 Principles of DC Microgrid Operation 65
2.3.1.1 The Definition of DC Terminals [13] 65
2.3.1.2 Control of DC Microgrids: Central Control and Autonomous Control 65
2.3.1.3 The Principles of DC Voltage Control [13] 67
2.3.1.4 Operational Criteria 68
2.3.1.5 Autonomous Control Strategy of DC Microgrid [17] 69
2.3.1.6 Enhanced Droop Control for DC Microgrids [13] 70
2.3.1.7 Enhanced Operational Control of DC Microgrid and Power Smoothing 71
2.3.1.8 Hierarchical Control Scheme with Low-Bandwidth Communication 72
2.4 Stability of DC Microgrids 74
2.4.1 Small Signal Model and Stability Assessment 74
2.4.1.1 Virtual Impedance Method 74
2.4.1.2 Impacts of Constant Power Load on System Stability 75
Static Consideration of a DC System with CPL 75
Small Signal Modeling of a CPL with Virtual Impedance Method 78
Dynamic Consideration of a CPL Within a DC Microgrid 78
2.5 Protection of DC Microgrids 79
2.5.1 Introduction to DC Faults 79
2.5.2 DC Circuit Breaking 82
2.6 Conclusion 83
References 83
Chapter 3: Integration of Renewable Energy Sources into the Transportation and Electricity Sectors 85
3.1 Introduction 85
3.2 On-Board Energy Harvesting Through Renewable Energy Sources 86
3.2.1 Introduction 86
3.2.2 Vehicle´s Main Features 88
3.2.3 PV Panel Sizing 89
3.2.4 Case Studies 91
3.2.4.1 Conventional Vehicles 91
3.2.4.2 Pure EVs 92
3.2.4.3 HEVs 93
3.2.4.4 Grid PHEVs 94
3.2.4.5 PV-Grid PHEVs 94
3.3 Opportunities and Challenges for Photovoltaic-Based EVSEs 97
3.3.1 Introduction 97
3.3.2 Solar Maximum Power Point Tracking for EV/PHEV Battery Charging 99
3.3.3 Power Electronics Interface 100
3.3.3.1 Conventional Structures of PV Systems 100
3.3.3.2 Central Inverters 101
3.3.3.3 String Inverters 101
3.3.3.4 Module-Integrated Inverters 102
3.3.4 Topologies for PV Inverters 103
3.3.4.1 PV Inverters with DC-DC Converter and Isolation 103
3.3.4.2 PV Inverters with DC-DC Converter and Without Isolation 103
3.3.4.3 PV Inverters Without DC-DC Converter and with Isolation 104
3.3.4.4 PV Inverters Without DC-DC Converters and Without Isolation 104
3.3.4.5 Possible PV Interconnection Schemes 105
3.3.4.6 Latest Research and New Proposed Topologies 106
3.4 Renewable Energy and Electric Mobility into the Smart Grid: Enabling Factors Towards Sustainability 108
3.4.1 Introduction 108
3.4.2 Smart Grid and EVs/PHEVs 111
3.4.2.1 Grid-Tied Infrastructure 111
3.4.2.2 PEVs as ``Peakers´´ 112
3.4.2.3 PEVs as Spinning and Non-spinning Reserve 112
3.4.2.4 PEVs as Voltage/Frequency Regulation Agents 112
3.4.2.5 PEVs as Reactive Power Providers [25] 113
3.4.3 Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) Concepts 113
3.4.3.1 Grid Upgrade 115
3.4.3.2 Renewable and Other Intermittent Resource Market Penetration 115
3.4.3.3 Dedicated Charging Infrastructure from Renewable Resources 116
3.4.4 Power Electronics for GRID and PEV Charging 116
3.4.4.1 Safety Considerations 117
3.4.4.2 Grid-Tied Residential Systems 118
3.4.4.3 Grid-Tied Public Systems 119
3.4.4.4 Grid-Tied Systems with Local Renewable Energy Production 124
3.5 Conclusions 127
References 128
Chapter 4: Charging Architectures for Electric and Plug-In Hybrid Electric Vehicles 131
4.1 Introduction 131
4.2 Onboard Chargers 134
4.2.1 Level 1: Dedicated Converter (Slow Charging) 135
4.2.2 Level 2: Integrated Converter (Semi-fast Charging) 137
4.3 Off-Board Chargers 142
4.3.1 Level 3: Dedicated Off-Board DC Chargers (Fast Charging) 143
4.3.1.1 Concept of Fast-Charging Stations 143
4.3.2 Common AC Bus Architecture 144
4.3.2.1 Common DC Bus Architecture 144
4.3.3 Central Converter Topologies 146
4.3.3.1 Two-Level Voltage Source Converter 146
4.3.3.2 Vienna Rectifier 148
4.3.3.3 Multipulse Rectifier with DC Active Power Filter 148
4.3.4 High-Power DC-DC Converters 149
4.3.4.1 Non-isolated Multichannel Interleaved Buck Converter 150
4.3.4.2 Phase-Shifted ZVS Full-Bridge Converter 150
4.3.4.3 Half-Bridge LLC Resonant Converter 151
4.3.5 Challenges for Fast-Charging Stations 151
4.4 EV / PHEV charging Standards 152
4.4.1 SAE J1772 Standard 153
4.4.2 CHAdeMO Standard 154
4.5 Control Schemes for Charging Converters 154
4.5.1 AC-DC Converter Control 154
4.5.1.1 Single-Phase AC-DC Converter Control 155
4.5.1.2 Three-Phase AC-DC Converter Control 156
Voltage Oriented Control 156
Direct Power Control 157
4.5.2 DC-DC Converter Control 158
4.6 Latest Developments and Future Trends 158
4.6.1 Inductive Charging 158
4.6.2 Multilevel Converters 160
4.6.2.1 Cascaded H-Bridge Converter 160
4.6.2.2 Modular Multilevel Converter 161
4.6.2.3 Neutral-Point Clamped Converter 162
4.6.2.4 Single DC-Link H-Bridge Converter 164
4.7 Summary 164
References 166
Chapter 5: Battery Technologies for Transportation Applications 170
1 Introduction 171
2 Battery Parameters 173
2.1 Storage Capacity 173
2.2 Energy Density 173
2.3 Specific Power 173
2.4 Cell Voltage 173
2.5 Charge and Discharge Current 174
2.6 State of Charge 174
2.7 Depth of Discharge 174
2.8 Cycle Life 174
2.9 Self-discharge 175
2.10 Round-Trip Efficiency 175
2.11 Overpotentials 175
3 Battery Technologies 176
3.1 Lead Acid 176
3.2 Nickel-Cadmium (Ni-Cd) 177
3.3 Nickel-Metal Hydride (Ni-MH) 178
3.4 Lithium-Ion (Li-Ion) 179
3.5 Flow Batteries 180
3.6 Fuel Cells 180
3.7 Super Capacitors 181
4 Battery Management 182
4.1 Battery Charging 182
4.1.1 Charging Methods 182
4.1.2 Charging Techniques 183
4.2 SoC Estimation 183
5 Battery Models 184
5.1 Li-Ion Battery Models 184
5.1.1 Experiments 184
5.1.2 Lumped-Sum Models 185
5.1.3 High Power Cells, Importance of Entropy-Related Terms 189
5.1.4 Pack Modelling 195
5.1.5 Cell Thermal Simulations 198
5.1.6 Pack Thermal Simulations 199
5.2 Flow Battery Models 203
5.2.1 Chemistry of Flow Batteries 203
5.2.2 Molality and Molarity 203
5.2.3 Chemical Equilibrium 204
5.2.4 Gibbs Free Energy and Nernst Equation 204
5.2.5 Vanadium Flow Batteries 206
5.2.6 Semi-solid Lithium Flow Batteries 208
5.2.7 Other Types of Flow Batteries 210
6 Battery Use in Transportation 212
6.1 Requirements For Transportation Applications 212
6.2 Personal Vehicles 212
6.3 Trains 213
6.4 Heavy-Duty Equipment 216
6.5 Challenges and Issues 219
6.6 System Aspects 219
7 Conclusions 220
References 221
Part II: Overview of Applications 226
Chapter 6: Plug-In Electric Vehicles´ Automated Charging Control: iZEUS Project 227
6.1 Introduction 228
6.1.1 Background 228
6.1.2 The iZEUS Project 229
6.1.3 Objective and Procedure 229
6.2 Charging Control Methods 229
6.2.1 Direct Control 230
6.2.2 Indirect Control 231
6.2.3 Autonomous Distributed Control 232
6.2.4 Discussion on Charging Control Methods 232
6.3 Driving and Charging Behavior 233
6.3.1 iZEUS Test Fleet 234
6.3.2 Driving Data Evaluation 235
6.3.3 Charging Behavior 237
6.3.4 Discussion on Driving and Charging Behavior 239
6.4 Simulation of Charging Control 240
6.4.1 Methods 240
6.4.1.1 Indirect Control 241
6.4.1.2 Autonomous Distributed Control 242
6.4.2 Scenario 244
6.4.2.1 Electricity System 245
6.4.2.2 Grid Simulation 246
6.5 Results 247
6.5.1 Indirect Price-Based Control: A Consumer Survey 247
6.5.2 Energy System Analysis 249
6.5.2.1 Smart Charging Savings 249
6.5.2.2 Vehicle-to-Grid Savings 250
6.5.3 Prototype Development and Demonstration 251
6.5.3.1 Metering Board 252
6.5.3.2 Controller Architecture 252
6.5.3.3 Automotive Integration 253
6.5.3.4 Demonstration 253
6.5.4 Grid Impact Analysis 255
6.6 Conclusions 257
References 258
Chapter 7: Experiences and Applications of Electric and Plug-In Hybrid Vehicles in Power System Networks 260
7.1 Electric Vehicles in Smart Grids Around the World: Experiences and Applications in the USA, Europe, and Australia 261
7.1.1 EV Potential and Applications of EVs in Australia 261
7.1.1.1 Commuting Trends of Australians 261
7.1.1.2 Electric Vehicle Market in Australia 262
7.1.1.3 Trial of Electric and Plug-In Hybrid Vehicles in Australia 263
Western Australian Electric Vehicle Trial 264
Ergon Energy´s Queensland EV Trial 267
Victorian Department of Transport (DoT) Trial 268
7.1.2 EV Potential and Applications of EVs in Europe 273
7.1.2.1 Electric Vehicle Market in Europe 273
7.1.3 EV Potential Applications of EVs in the USA and Canada 275
7.2 Impact Analysis of Electric Vehicles 279
7.2.1 Impacts on Car Users 279
7.2.2 Impacts on Grids and Power Quality 281
7.2.3 Impacts on Carbon Emissions 282
7.3 Applications of Electric Vehicle Recharging/Discharging 284
7.3.1 Electric Vehicle Chargers and Vehicle-to-Grid Technology 285
7.3.2 Vehicle-to-Grid Technology 290
7.3.3 EV Charging Technology 291
7.3.4 Addressing the Interoperability Challenge 292
7.3.5 Communicating Between EVs, Recharging Stations, and the Grid 294
7.4 Conclusion 294
References 295
Part III: Adoption and Market Diffusion 298
Chapter 8: Perceptions and Adoption of EVs for Private Use and Policy Lessons Learned 299
8.1 Introduction 300
8.2 Preferences Regarding Alternative Fuel Vehicle Characteristics 302
8.3 Penetration of Electric Vehicles and Policy Implications 304
8.3.1 Market Uptake 304
8.3.2 Examples of Rapid EV Adoption and Lessons Learned 308
8.3.2.1 USA: California 308
8.3.2.2 Europe: Norway 310
8.3.2.3 Asia: Japan 312
8.4 Conclusions 313
References 313
Index 317

Erscheint lt. Verlag 30.12.2016
Zusatzinfo XXIV, 307 p. 166 illus., 94 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte Electric Vehicles • Energy Storage Systems • Green Transportation • Micro-grid • Plug-in Hybrid Vehicles • Power converters • Renewable energy sources • Smart Grid • Ultra-fast DC Charging • Vehicle-to-grid
ISBN-10 3-319-43651-1 / 3319436511
ISBN-13 978-3-319-43651-7 / 9783319436517
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35