Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Conducting Polymer Hybrids (eBook)

eBook Download: PDF
2016 | 1st ed. 2017
V, 336 Seiten
Springer International Publishing (Verlag)
978-3-319-46458-9 (ISBN)

Lese- und Medienproben

Conducting Polymer Hybrids -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given.
'Conducting Polymer Hybrids' is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel.



Vijay Kumar is currently a postdoctoral research fellow in the Department of Physics at the University of the Free State. His current research interests are in rare-earth doped up-conversion nanomaterials. He has published more than 40 research papers in different peer reviewed international journals.
Susheel Kalia is Associate Professor & Head of the Department of Chemistry at Army Cadet College Wing of the Indian Military Academy Dehradun. He was visiting researcher in the Department of Civil, Chemical, Environmental and Materials Engineering at University of Bologna, Italy, in 2013, and held a position as Assistant Professor in the Department of Chemistry, Bahra University, Solan, India until 2015. His research interests include polymeric composites, bio- and nanocomposites, conducting polymers, nanofibers, nanoparticles, hybrid materials, hydrogels, and cryogenics, and are documented in more than 65 research papers in international journals, over 80 conference contributions (incl. numerous invited contributions) and several book chapters. Kalia is an experienced book editor, and he has edited a number of successful books (with Springer), such as 'Cellulose Fibers: Bio- and Nano-Polymer Composites', 'Polymers at Cryogenic Temperatures', or 'Polysaccharide Based Graft Copolymers'.
Hendrik C. Swart is senior professor in the Department of Physics at the University of the Free State. His research focus is on solid state luminescent and advanced materials, with a main objective to develop micro- and nanophosphors for applications in infrastructure and high technology flat panel displays.  He has more than 270 publications in international peer reviewed journals, 40 peer reviewed conference proceedings, and 3 book chapters and books as well as 400 national and international conference contributions.

Vijay Kumar is currently a postdoctoral research fellow in the Department of Physics at the University of the Free State. His current research interests are in rare-earth doped up-conversion nanomaterials. He has published more than 40 research papers in different peer reviewed international journals. Susheel Kalia is Associate Professor & Head of the Department of Chemistry at Army Cadet College Wing of the Indian Military Academy Dehradun. He was visiting researcher in the Department of Civil, Chemical, Environmental and Materials Engineering at University of Bologna, Italy, in 2013, and held a position as Assistant Professor in the Department of Chemistry, Bahra University, Solan, India until 2015. His research interests include polymeric composites, bio- and nanocomposites, conducting polymers, nanofibers, nanoparticles, hybrid materials, hydrogels, and cryogenics, and are documented in more than 65 research papers in international journals, over 80 conference contributions (incl. numerous invited contributions) and several book chapters. Kalia is an experienced book editor, and he has edited a number of successful books (with Springer), such as "Cellulose Fibers: Bio- and Nano-Polymer Composites", "Polymers at Cryogenic Temperatures", or "Polysaccharide Based Graft Copolymers". Hendrik C. Swart is senior professor in the Department of Physics at the University of the Free State. His research focus is on solid state luminescent and advanced materials, with a main objective to develop micro‐ and nanophosphors for applications in infrastructure and high technology flat panel displays.  He has more than 270 publications in international peer reviewed journals, 40 peer reviewed conference proceedings, and 3 book chapters and books as well as 400 national and international conference contributions.

Contents 6
1 Conducting Polymer Nanocomposites: Recent Developments and Future Prospects 7
Abstract 7
1 Introduction 8
2 Background 10
2.1 Percolation Theory 10
2.2 Conduction Mechanism 11
2.3 Characterization of Conductive Network in CPCs 11
3 The Design for High-Performance CPCs 12
3.1 Conductive Fillers 12
3.2 Polymer Matrix 13
3.3 The Choice of Fabrication Methods 14
3.3.1 Melting Blending 15
3.3.2 Solution Mixing 16
3.3.3 In Situ Polymerization 17
4 The Strategy for Controlling the Morphology of Conductive Filler Network in CPCs 19
4.1 Morphology Control by Polymer Blends 19
4.2 Morphology Control by Thermal Annealing 21
4.3 Morphology Control by Shear Force 23
4.4 Morphology Control by Latex Technology 23
4.5 Morphology Control by Mixing Different Nanofillers 25
4.6 Morphology Control Through Other Methods 28
5 Applications of CPCs 28
5.1 Sensors 28
5.1.1 Temperature Sensors 29
5.1.2 Strain Sensor 30
5.1.3 Chemical Sensor 31
5.1.4 Stretchable Conductor 32
5.1.5 Thermoelectric Material 35
5.1.6 Electrodes for Energy Storage 36
5.1.7 Biomedical Application 37
6 Conclusion and Outlook 39
Acknowledgments 41
References 41
2 Magnetic Nanoparticles-Based Conducting Polymer Nanocomposites 51
Abstract 51
1 Introduction 51
2 Synthetic Strategies 54
2.1 Mixing or Blending Pre-synthesized Conducting Polymers and Magnetic NPs 58
2.2 In Situ Synthesis of Magnetic Nanoparticles into Conducting Polymers 59
2.3 In Situ Polymerization in the Presence of Magnetic Nanoparticles 60
2.4 Simultaneous Polymerization and Synthesis of Magnetic Nanoparticles 63
3 Magneto-Electrical Properties 63
3.1 Magnetic Nanoparticles 63
3.2 Conducting Polymers 66
3.2.1 Characteristics of the Most Common Conducting Polymers 67
Polyaniline 67
Polythiophene 68
Polypyrrole 68
3.3 Magneto-Electrical Properties of the Composites 68
4 Applications 73
4.1 Electromagnetic Shielding and Microwave Absorbing Materials 73
4.2 Polymer Solar Cells 76
4.3 Sensors 77
5 Concluding Remarks and Future Perspectives 79
Acknowledgments 80
References 80
3 Polypyrrole Nanotubes-Silver Nanoparticles Hybrid Nanocomposites: Dielectric, Optical, Antimicrobial and Haemolysis Activity Study 87
Abstract 87
1 Introduction 88
2 Present Status and Future Prospects of Conducting Polymer-based Hybrid Nanocomposites 92
3 Conducting Polymer-Based Hybrid Nanocomposites 93
3.1 Nanocomposites with Metal Nanoparticles 93
3.2 Nanocomposites with Metal–Oxide Nanoparticles 95
3.3 Nanocomposites with Carbon Materials 96
3.4 Conducting Polymer Based Ternary Nanocomposites 98
4 Properties and Applications of Conducting Polymer Based Hybrids 100
4.1 Nanoelectronics 100
4.2 Energy Storage Devices 100
4.3 Sensors 101
4.4 Microwave Absorption and EMI Shielding 104
4.5 Biomedical Applications 104
5 Surface-Enhanced Raman Spectroscopy Studies of Metal-Polypyrrole Nanocomposites 106
6 Polypyrrole Nanotubes-Silver Nanoparticles Hybrid Nanocomposites 107
6.1 Synthesis 107
6.1.1 Synthesis of Polypyrrole Nanotubes 107
6.1.2 Preparation of Polypyrrole Nanotubes-Silver Nanoparticles Nanocomposites 108
6.2 Morphological Analysis 108
6.3 X-Ray Diffraction Study 109
6.4 UV–Vis Spectroscopy Study 110
6.5 Dielectric Spectroscopy 112
6.5.1 Permittivity Formalism 112
6.5.2 Modulus Formalism 113
6.6 Ac Conductivity Study 114
6.7 Antimicrobial Activity of the Nanocomposites 115
6.8 Haemolysis Activity Study 117
7 Conclusions 118
References 119
4 Conductive Polymer Composites Based on Carbon Nanomaterials 122
Abstract 122
1 Introduction 122
2 Brief History of Conductive Polymer and Their Composites 125
3 Some Important Terms Related to Conductive Polymers and Their Definitions 125
3.1 Some Most Studied Conductive Polymers 125
3.2 Composites 125
3.3 Nanomaterials and Conducting Polymer Composites 127
4 Carbon Nanotube (CNT)-Based Conductive Polymer Composites 128
4.1 Methods of Synthesis for CNTs-Based Conducting Polymers 129
4.2 Characterization Techniques 131
4.3 Application of CNT-Based Conducting Polymer Nanocomposites 133
4.3.1 Supercapacitors 133
4.3.2 Fuel Cell Electrode 134
4.3.3 Electrochemical Actuators 135
4.3.4 Memory Devices 136
4.3.5 Field Emission Devices 136
4.3.6 Lithium Batteries 137
5 Graphene-Based Conductive Polymer Composites 138
5.1 Graphene 138
5.2 Graphene and Derivatives-Based Conducting Polymers 138
5.3 Various Approaches for the Synthesis of Graphene-Based Conducting Polymer 140
5.3.1 Solution and Melt Mixing Without Covalent Bonding 140
5.3.2 In Situ Polymerization Without Covalent Bonding 142
5.3.3 Characterization Techniques 143
5.3.4 Application of Graphene-Based Conducting Polymers 143
6 Conclusion and Future Prospects 143
References 144
5 Clay-Based Conducting Polymer Nanocomposites 148
Abstract 148
1 Introduction 149
2 Nanocomposites 150
2.1 Clays 150
2.2 Polymeric Nanocomposites 152
2.2.1 Preparation of Nanocomposites 155
2.3 Conducting Polymer Nanocomposites 159
2.3.1 Conducting Polymer 160
Polyaniline 162
3 Applied Study: PAni and MMT 163
4 Conclusions 165
References 165
6 A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials 169
Abstract 169
1 Introduction 170
2 Supercapacitor Energy Storage Mechanisms 170
3 CPs and Carbon Materials in Energy Storage 173
4 CP/Carbon Hybrids as Electrodes for Supercapacitor 177
4.1 CP/Activated Carbon Hybrids 177
4.2 CP/Carbon Nanotube Hybrids 177
4.3 CP/Graphene Hybrids 178
4.4 CP Hybrids for Flexible Semisolid/Solid-State Supercapacitors 184
4.5 Equivalent Circuit Models 187
5 Conclusion 191
Acknowledgments 191
References 192
7 Conducting Polymer Hydrogels and Their Applications 197
Abstract 197
1 Introduction 198
1.1 Hydrogels 199
1.2 Classifications of Hydrogels 200
1.2.1 Classification Based on Source 200
1.2.2 Classification According to Polymeric Composition 200
1.2.3 Classification Based on Structural Feature 202
1.2.4 Classification Based on Physical Appearance 202
1.2.5 Classification Based on Ionic Charges 202
1.2.6 Classification Based on Type of Cross-Linking 202
1.3 Synthesis of Graft Copolymers 202
1.4 Characteristics of Hydrogels 203
2 Conducting Polymers 204
3 Conducting Hydrogels 205
3.1 Conducting Hydrogel Based upon Conducting Polymer 206
3.2 Conducting Hydrogel Based upon Metal/Nanoparticles 207
3.3 Method of Synthesis of Conducting Hydrogels 207
3.3.1 Chemically Cross-Linked Conductive Hydrogels 207
3.3.2 Radiation Cross-Linked Conductive Hydrogels 209
4 Characterization 210
5 Applications of Conducting Hydrogels 211
5.1 Drug Delivery Devices 212
5.2 Biomedical Applications 213
5.3 Agricultural and Horticultural 214
5.4 Wastewater Treatment 216
5.5 Bioelectrodes 218
6 Conclusion and Future Perspective 220
References 220
8 Conducting Polymer Nanocomposites for Sensor Applications 226
Abstract 226
1 Introduction to Sensors/Biosensors 227
2 Conducting Polymers 231
3 Nanostructure Conducting Polymers 233
3.1 Hard Template Synthesis 234
3.2 Soft Template Synthesis 235
3.3 Electrospinning Method 236
4 Conducting Polymer Nanocomposites 238
4.1 Synthesis of Conducting Polymer Nanocomposites 239
4.2 Particulate (0D)-Reinforced Nanocomposites 240
4.3 Fiber (1D)-Reinforced Nanocomposites 243
4.4 Flake (2D)-Reinforced Nanocomposites 247
4.5 Multicomponents-Reinforced Nanocomposites 248
5 Conducting Polymer Nanocomposites for Sensors/Biosensors 250
5.1 Gas Sensing Application 251
5.2 Biosensing Application 257
6 Conclusion 268
References 268
9 Conducting Polymer Nanocomposite-Based Supercapacitors 271
Abstract 271
1 Introduction 272
2 Energy and Power Characteristics of Supercapacitors 272
2.1 Capacitance of an Electrode 272
2.2 Electrical Power and Energy of a Supercapacitor 276
2.3 Materials for Construction of Supercapacitors 279
2.4 Charge Storage Mechanisms 280
2.5 Electronically Conducting Polymer 281
2.6 Polypyrrole (PPy) 283
2.7 Polyaniline (PAn) 284
2.8 Poly(3,4-Ethylenedioxythiophene) (PEDOT) 284
2.9 The Necessity for ECP Nanocomposites 285
2.10 The Formation of ECP Nanocomposites 286
2.11 ECP–CNT Nanocomposites 288
2.12 ECP-Graphene Nanocomposite 292
2.13 ECP-Cellulose Nanocomposites 294
2.14 Prototypes and Devices 297
3 Comments 300
4 Conclusions 302
References 303
10 Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors 307
Abstract 307
1 Introduction 308
2 CNT Modifications with Polymers 310
3 Composites Based on CNTs and CPs for Supercapacitors 312
3.1 PPy–CNT Composites 313
3.2 PANi–CNT Composites 325
4 Summary, Conclusive Remarks and Future Perspectives 334
References 336

Erscheint lt. Verlag 2.11.2016
Reihe/Serie Springer Series on Polymer and Composite Materials
Springer Series on Polymer and Composite Materials
Zusatzinfo V, 336 p. 195 illus., 135 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik Maschinenbau
Schlagworte Carbon Nanotubes • Cellulose Nanocrystals • Conducting Polymer-hydrogels • conducting polymers • Electronic Applications • Graphene based Nanocomposites • Magnetic Nanoparticles • Metallic Nanofillers • Nanocomposites • Sensing Applications
ISBN-10 3-319-46458-2 / 3319464582
ISBN-13 978-3-319-46458-9 / 9783319464589
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95