Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning in Radiation Oncology -

Machine Learning in Radiation Oncology

Theory and Applications
Buch | Softcover
XIV, 336 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-35464-4 (ISBN)
CHF 127,30 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Introduction: What is Machine Learning.- Computational Learning Theory.- Overview of Supervised Learning Methods.- Overview of Unsupervised Learning Methods.- Performance Evaluation.- Variety of Applications in Radiation Oncology.- Machine Learning for Quality Assurance: Quality Assurance as a Learning Problem.- Detection of Radiotherapy Errors Using Unsupervised Learning.- Prediction of Radiotherapy Errors Using Supervised Learning.- Machine Learning for Computer-Aided Detection: Detection of Cancer Lesions from Imaging.- Classification of Malignant and Benign Tumours.- Machine Learning for Treatment Planning and Delivery.- Image-guided Radiotherapy with Machine Learning: IMRT Optimization Using Machine Learning.- Treatment Assessment Tools.- Machine Learning for Motion Management: Prediction of Respiratory Motion.- Motion-Correction Using Learning Methods.- Machine Learning Application in 4D-CT.- Machine Learning Application in Dynamic Delivery.- Machine Learning for Outcomes Modeling: Bioinformatics of Treatment Response.- Modelling of Norma Tissue Complication Probabilities (NTCP).- Modelling of Tumour Control Probability (TCP).

Erscheinungsdatum
Zusatzinfo XIV, 336 p. 127 illus., 67 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Onkologie
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Schlagworte machine learning • Medical and Radiation Physics • medical physics • Medicine • Medicine: general issues • Nuclear chemistry, photochemistry and radiation • Outcome Modelling • radiation oncology • radiation physics • Radiaton Oncology • Radiology • radiotherapy • Treatment Planning
ISBN-10 3-319-35464-7 / 3319354647
ISBN-13 978-3-319-35464-4 / 9783319354644
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Röntgen-Thorax-Diagnostik

von Matthias Hofer; Matthias Hofer; Lars Kamper …

Buch | Softcover (2023)
Didamed Verlag
CHF 55,85