Hydrogen Energy Engineering (eBook)
XIV, 593 Seiten
Springer Tokyo (Verlag)
978-4-431-56042-5 (ISBN)
This book focuses on the fundamental principles and latest research findings in hydrogen energy fields including: hydrogen production, hydrogen storage, fuel cells, hydrogen safety, economics, and the impact on society. Further, the book introduces the latest development trends in practical applications, especially in commercial household fuel cells and commercial fuel cell vehicles in Japan. This book not only helps readers to further their basic knowledge, but also presents the state of the art of hydrogen-energy-related research and development. This work serves as an excellent reference for beginners such as graduate students, as well as a handbook and systematic summary of entire hydrogen-energy systems for scientists and engineers.
Preface 6
Contents 8
Contributors 12
General Introduction 16
1 Why Hydrogen? Why Fuel Cells? 17
Abstract 17
References 28
2 Current Status: General 29
Abstract 29
2.1 The First Year of Hydrogen, 2015 29
2.2 Electrochemical Energy Conversion: Fuel Cells 33
2.3 Hydrogen Utilization Technologies 37
2.4 Hydrogen Production and Storage Technologies 42
2.5 Prospects of a Hydrogen Society 45
References 49
3 Current Status: Global 50
Abstract 50
3.1 United States of America (US) 50
3.2 European Union 54
3.3 Germany 55
3.4 Scandinavian Countries 57
3.5 The United Kingdom 61
3.6 France 62
3.7 Switzerland 62
3.8 South Korea 62
3.9 The People’s Republic of China 64
References 64
4 Development Histories: Hydrogen Technologies 65
Abstract 65
4.1 Discovery of Hydrogen and Its First Use (1700–1970) 66
4.2 Use of Hydrogen in the Aerospace Fields (1900–Present) 69
4.3 Production of Hydrogen for Industrial Use (1920–Present) 70
4.3.1 Hydrogen Production by Alkaline Water Electrolysis 70
4.3.2 Hydrogen Production by Solid Polymer-Type Electrolyte Water Electrolysis 72
4.3.3 Hydrogen Production from Hydrocarbons 73
4.3.4 Production of Liquid Hydrogen 75
4.4 Hydrogen Energy Technology Research and Development Triggered by the Oil Crisis (1970–2000) 76
4.4.1 Foundation and Activities of Hydrogen Energy-Related Organizations (1973–1989) 76
4.4.2 Renewable Energy Utilization Hydrogen Projects in Europe (1986–1999) 77
4.5 Hydrogen Energy Technology Developments by National Projects (1990–Present) 80
4.5.1 U.S. Department of Energy Hydrogen Program (1992–Present) 80
4.5.2 Japan’s WE-NET (World Energy Network) Project (Fiscal Years 1993–2003) 81
4.5.3 European Union Research and Development Through European Hydrogen Vision (2002–Present) 85
4.5.4 Hydrogen Storage Technology Research and Development (1960–Present) 86
4.6 Development of Hydrogen Vehicles and Demonstration Projects for the Commercial Use of Hydrogen (1970–2009) 89
4.6.1 Development of Hydrogen Vehicles 89
4.6.2 Demonstration of the Commercial Use of Hydrogen in the Munich Airport Hydrogen Project 90
4.7 Development of Fuel Cell Vehicles and Hydrogen Filling Stations (1990–2013) 91
4.7.1 Development of the First Fuel Cell Vehicles and Fuel Cell Buses 91
4.7.2 Demonstration of Fuel Cell Vehicles and Fuel Cell Buses Around the World (1999– 2013) 95
4.7.3 History of Hydrogen Station Development and the Current Situation (1999–Present) 96
4.8 Measures Taken to Promote the Hydrogen Society (2003–Present) 100
4.8.1 Mitigation of Laws and Regulations, and Verification of Hydrogen Safety 100
4.8.2 Release of Fuel Cell Vehicles and Support for Popularization 101
4.8.3 Attempt to Establish a Hydrogen Society Through Japan’s Basic Energy Plan 101
4.8.4 Establishment of a Large-Scale Hydrogen Supply Chain (Mass Sea Transport of Hydrogen) 102
References 103
5 Development Histories: Fuel Cell Technologies 105
Abstract 105
5.1 Discovery of the Principle of Fuel Cells and Implementation of Fuel Cell Experiments (1801–1962) 105
5.2 Utilization of Fuel Cells in Space (1965–Present) 107
5.3 Commercial Prototype Development of Various Fuel Cells (1958–2015) 108
5.3.1 Development of Alkaline Fuel Cells (1958–Present) 108
5.3.2 Development of Phosphoric Acid Fuel Cells (1967–Present) 110
5.3.3 Development of Molten Carbonate Fuel Cells (1976–Present) 116
5.3.4 Development of Solid Oxide Fuel Cells (1960–Present) 119
5.3.5 Development of Polymer Electrolyte Fuel Cells (1987–Present) 121
References 127
6 Future Technological Directions 128
Abstract 128
Hydrogen Production 131
7 Introduction 132
Abstract 132
8 Steam Reforming 135
Abstract 135
8.1 Introduction 136
8.2 Catalytic Steam Reforming 136
8.3 Biomass Fermentation for Methane Production 137
8.4 Application of Biogas in Fuel Cells 140
8.5 Steam Reforming with Carbon Capture and Sequestration 141
References 142
9 Alkaline Water Electrolysis 144
Abstract 144
9.1 Introduction 144
9.2 Principles of Operation 145
9.3 Efficiency 145
9.4 Cell Components 148
9.5 Uses in Industry 148
9.6 Recent Trends 149
References 149
10 Polymer Electrolyte Membrane Water Electrolysis 150
Abstract 150
10.1 Introduction 150
10.2 Principles of Operation 150
10.3 Efficiency 151
10.4 Cell Components 152
10.5 Uses in Industry 153
10.6 Recent Trends 153
References 155
11 Steam Electrolysis 157
Abstract 157
11.1 Principles of Operation 157
11.2 Electrolyte and Electrode Materials 159
11.3 Efficiency 159
11.4 Examples of Steam Electrolysis 161
11.5 Summary and Future Prospects 162
References 163
12 Photocatalytic Water Splitting 164
Abstract 164
12.1 Introduction 164
12.2 Photosynthesis 165
12.3 Artificial Photosynthesis 166
12.4 Materials for Artificial Photosynthesis 167
12.4.1 Visible-Light-Driven Photocatalysis 168
12.4.2 Dye-Sensitized Visible-Light-Driven Photocatalysis 169
12.4.3 Inorganic Z-Scheme Visible-Light-Driven Photocatalysis 172
12.4.4 Organic–Inorganic Hybrid Z-Scheme Visible-Light-Driven Photocatalysis 173
References 175
Hydrogen Storage 180
13 Fundamentals 181
Abstract 181
13.1 Physical and Chemical Properties of Hydrogen 181
13.2 Phase Diagram of Metal-Hydrogen Systems 182
13.3 Hydrogen-Material Interaction 184
13.4 Enthalpy of Hydride Formation and Equilibrium Pressure 185
13.5 The Stability of Intermetallic Compound Hydrides 188
13.6 Reaction Kinetics 189
References 193
14 Solid Hydrogen Storage Materials: Interstitial Hydrides 195
Abstract 195
14.1 Hydrogen Absorbing Alloys and Formation of Interstitial Hydrides 195
14.2 Properties of Interstitial Hydrides 197
14.3 Classification by Elements 198
14.4 Classification by Atomic Ratio and Crystal Structure 198
14.4.1 AB5-Type Alloys 201
14.4.2 AB2-Type Alloys 202
14.4.3 AB-Type Alloys 203
14.4.4 A2B-Type Alloys 205
14.4.5 AB3-Type Alloys 205
14.4.6 BCC Solid Solutions 206
References 209
15 Solid Hydrogen Storage Materials: Non-interstitial Hydrides 211
Abstract 211
15.1 Alanates 212
15.1.1 Synthesis Methods 212
15.1.2 Crystal Structure 212
15.1.3 Dehydrogenation and Rehydrogenation Properties 212
15.1.4 Dopant-Improved De/Rehydrogenation Properties 215
15.2 Amides 215
15.2.1 Synthesis 216
15.2.2 Crystal Structure 216
15.2.3 Chemical Combinations for Tuning Thermodynamics 216
15.2.4 Strategies for Kinetic Improvement 219
15.3 Borohydrides 219
15.3.1 Synthesis 220
15.3.2 Crystal Structure 220
15.3.3 Dehydrogenation and Rehydrogenation Properties 221
15.3.4 The Role of Electronegativity in Tuning Enthalpy 222
15.3.5 Reactive Hydride Composites to Tune Enthalpy 223
15.4 Magnesium Hydride 224
15.4.1 Synthesis 224
15.4.2 Crystal Structure 225
15.4.3 Tuning Thermodynamics 225
15.4.4 Improved Kinetics 225
15.5 Aluminum Hydride 226
15.5.1 Synthesis 226
15.5.2 Crystal Structure 227
15.5.3 Thermodynamics and Kinetics 228
15.6 Ammonium Borane 230
15.6.1 Crystal Structure and Dehydrogenation of AB 230
15.6.2 Modifications on Dehydrogenation of AB 234
15.6.3 Metal Amidoboranes 235
References 236
16 Solid Hydrogen Storage Materials: High Surface Area Adsorbents 244
Abstract 244
16.1 Adsorption Isotherms 245
16.2 Nanostructured Carbon 246
16.2.1 Nanostructure 246
16.2.2 Binding Energy 247
16.2.3 Strong Binding on Metal Sites 248
16.2.4 Spillover 248
16.3 Metal Organic Frameworks (MOFs) 249
16.3.1 Surface Area and Pore Volume 250
16.3.2 Pore Size and Geometry 250
16.3.3 Open Metal Sites 251
16.3.4 Catenation 251
References 251
17 Liquid Hydrogen Carriers 255
Abstract 255
17.1 Liquid Hydrogen 255
17.1.1 The Joule–Thomson Effect 256
17.1.2 Liquefaction Process 256
17.1.3 Storage Vessel 258
17.2 Organic Hydrides 259
17.2.1 Cycloalkanes 259
17.2.2 Heterocycles 261
17.3 Ammonia 262
17.3.1 Ammonia Properties 262
17.3.2 Ammonia Production 262
17.3.3 Ammonia Decomposition 264
References 265
18 Compressed Hydrogen: Thermophysical Properties 267
Abstract 267
18.1 PVT Property 268
18.2 Viscosity and Thermal Conductivity 270
References 273
19 Compressed Hydrogen: High-Pressure Hydrogen Tanks 275
Abstract 275
19.1 Tank Development 276
19.2 Stationary Storage 276
19.3 Portable Storage 278
19.3.1 Hydrogen Trailer 278
19.3.2 FCV Onboard Storage 278
19.3.3 Hybrid MH Tank System 279
References 280
20 Hydrogen Storage: Conclusions and Future Perspectives 281
Abstract 281
References 284
Hydrogen Utilization 285
21 Fundamentals 286
Abstract 286
21.1 Electrochemistry and Overpotential 286
21.2 Defect Chemistry 289
21.3 Experimental Procedures 291
References 299
22 Polymer Electrolyte Fuel Cells (PEFCs) 301
Abstract 301
22.1 Operating Principles of the PEFC [1] 301
22.2 Electrolytes 303
22.3 Electrodes (Electrocatalysts) 305
22.4 Gas Diffusion Layer [22, 23] 307
22.5 Cell and Stack 308
22.6 Practical Materials and Applications of PEFCs 310
References 310
23 Solid Oxide Fuel Cells (SOFCs) 312
Abstract 312
23.1 Operating Principles of the SOFC [1] 312
23.2 Electrolytes 314
23.3 Electrode 315
23.4 Chemical Degradation 318
23.5 Cell and Stack 318
References 322
24 Alkaline Electrolyte Fuel Cells (AFCs) 324
Abstract 324
24.1 Operating Principles of the AFC 324
24.2 Electrolytes 325
24.3 Electrodes (Electrocatalysts) 327
24.4 Cell and Stack 328
24.5 Practical Materials and Applications of AFCs 330
References 332
25 Hydrogen Combustion Systems 333
Abstract 333
25.1 Overview 333
25.2 Combustion Reactions and Analysis Approach 334
25.3 Low-Temperature Stage of the Hydrogen Combustion Reaction 336
25.4 Combustion Methods for a Hydrogen-Fueled C-ICE 338
25.5 Hydrogen Application Concept for C-ICE 340
25.6 Case Studies of Hydrogen Combustion in Medium-Sized Internal Combustion Engines 348
25.6.1 An Example of Research on a High-Powered Hydrogen Engine System [17] 348
25.6.2 A Fundamental Study on “Hydrogen-Admixture to Natural Gas” Combustion [18] 350
25.6.3 A Case Study of Engine Operation with Hydrogen-Admixture to Natural Gas (Limit on Knocking/Misfiring) [19] 352
References 352
Hydrogen Safety 354
26 Hydrogen Safety Fundamentals 355
Abstract 355
26.1 Important Issues in Hydrogen Safety 355
26.2 Recent Trends in Evaluation of Hydrogen Compatibility 356
26.3 Tensile Behavior of Metals in the Presence of Hydrogen 357
26.3.1 Effect of Hydrogen on the Loss of Tensile Ductility of Various Metals 357
26.3.2 Change in Void Morphology of Pipeline and Type 316L Steels 358
26.4 Fatigue Behavior of Metals in the Presence of Hydrogen 360
26.4.1 General Types of Hydrogen-Assisted FCG Behavior 360
26.4.2 Fatigue Behavior of Pipeline and Cr–Mo Steels 360
26.4.3 Fatigue Behavior of Austenitic Stainless Steels 362
26.4.3.1 Effect of Hydrogen and Test Frequency on FCG Behavior 362
26.4.3.2 FCG Behavior of Type 316L by Removing Non-diffusible Hydrogen 364
26.4.3.3 Hydrogen-Induced Striation Formation Mechanism and FCG Mechanism 365
26.4.4 Fatigue Behavior of High-Strength Steel 365
26.4.4.1 Effect of Hydrogen on FCG Rate 365
26.4.4.2 Initiation and Cause of Secondary Cracks 366
26.4.5 Fatigue Behavior of Aluminums 370
26.5 Hydrogen Diffusivity and Solubility 370
26.5.1 Iron and Steels 371
26.5.2 Aluminums 375
26.6 Hydrogen-Induced Fracture of Rubbers 375
References 377
27 Hydrogen Gas Safety Management 381
Abstract 381
27.1 Dangers Posed by Hydrogen 381
27.2 Properties of Hydrogen 382
27.3 Combustion of Hydrogen 385
27.4 Combustion Under Pressure 385
27.5 Effect of Diluent Gas 386
27.6 Prevention of Hydrogen-Related Accidents 386
27.7 Hydrogen Diffusion 388
27.8 Example of the Necessity of Hydrogen Dissipation 389
27.9 Hydrogen Diffusion Near a Ceiling 389
27.10 Hydrogen Sensors 390
References 391
28 Hydrogen Safety in Practice 392
Abstract 392
28.1 Safety Measures and Devices for Hydrogen Facilities 392
28.2 Examples of Near Miss Reports 394
29 Effect of Hydrogen on the Tensile Properties of Metals 397
Abstract 397
29.1 Assessment of Tensile Properties in the Presence of Hydrogen 397
29.2 Notched and Unnotched Tensile Strength and Ductility in Hydrogen Environment 398
29.3 Mechanisms of HE in Tensile Tests 399
29.4 Effect of Hydrogen on Tensile Properties 400
29.4.1 Effect of Nickel Equivalent on RRA in Hydrogen Atmosphere for Austenitic Stainless Steels 400
29.4.2 Effect of Hydrogen on Tensile Properties of Austenitic Stainless Steels 402
References 404
30 Effect of Hydrogen on Fatigue Properties of Metals 405
Abstract 405
30.1 Fatigue Life Properties in High-Pressure Hydrogen Gas 405
30.2 Fatigue Crack Growth (FCG) Properties 409
30.2.1 FCG in Hydrogen Gas 409
30.2.2 Morphology of FCG in Hydrogen Gas 414
References 418
31 Effect of Hydrogen on the Fretting Fatigue Properties of Metals 420
Abstract 420
31.1 Fretting Fatigue 420
31.2 Fretting Fatigue Test Method 421
31.3 Effect of Hydrogen on Fretting Fatigue Strength 422
31.4 Mechanisms for the Hydrogen-Induced Reduction in Fretting Fatigue Strength 424
31.4.1 Local Adhesion Between Contacting Surfaces 424
31.4.2 Hydrogen-Induced Reduction in Critical Stress to Crack Initiation 425
31.4.3 Microstructure Change Due to Adhesion 427
References 429
32 Structural Design and Testing 431
Abstract 431
32.1 Design Methods in Consideration of the Effects of Hydrogen 431
32.2 Safety Factor Multiplier Method 432
32.3 Design by Rule 433
32.4 Design by Analysis 434
32.5 Importance of Operation Histories 435
32.6 Pressure Cycling of Real Pressure Vessels 436
32.6.1 Materials and Pressure Vessels 436
32.6.2 Fatigue Life and Failure Behavior 437
32.6.3 Fatigue-Life Assessment 441
References 442
33 Future Perspectives 444
Abstract 444
References 447
Applications and Perspectives 449
34 Development of the MIRAI Fuel Cell Vehicle 450
Abstract 450
34.1 Introduction 450
34.2 Significance of Hydrogen Energy 451
34.3 Development of the MIRAI: Japan’s First Mass-Production FCV 452
34.3.1 Newly Developed Toyota Fuel Cell System (TFCS) 453
34.3.2 Vehicle Package 453
34.3.3 Advanced Design and Future Mobility 454
34.4 Outstanding Vehicle Performance 456
34.4.1 Aerodynamic Performance 456
34.4.2 Noise and Vibration Performance 457
34.4.3 Crash Safety 458
34.4.4 Dynamic Performance, Drivability, Driving Stability, and Ride Comfort 459
34.4.5 Air Conditioning Performance 460
34.5 Advanced Equipment 461
34.6 External Power Supply 462
34.7 Environmental Performance 463
34.7.1 Life Cycle Assessment (LCA) 463
34.8 Conclusions 464
Reference 464
35 Residential Applications: ENE-FARM 465
Abstract 465
35.1 Introduction 465
35.2 Features and Merits of ENE-FARM 466
35.3 Sales of Residential Fuel Cell CHP Systems 468
35.4 Improving the Specifications 468
35.4.1 Off-Grid Operation in the Event of Grid Power Outage 468
35.4.2 Modifications for Condominium Installation 469
35.5 Summary 469
References 470
36 Distributed Power Generation 471
Abstract 471
36.1 Introduction 471
36.2 Fuel Cells for Distributed Generation 472
36.3 Examples of SOFC High-Efficiency Power Generation Systems 474
36.3.1 Cell Stack 474
36.3.2 Cartridge 476
36.3.3 Hybrid System 477
36.4 System Verification 478
36.4.1 Verification of Long-Term Durability 478
36.4.2 Start-up Characteristics of the System 479
36.4.3 System Verification 480
36.5 Future Introduction and Development 481
36.6 Road to a Hydrogen Society 481
36.6.1 Multi-energy Station 481
36.6.2 Local Production of Energy for Local Consumption (Use of Renewable Energy) 482
36.7 Summary 483
References 484
37 Triple Combined Cycle Power Generation 485
Abstract 485
37.1 Introduction 485
37.2 Gas Turbine Fuel Cells (GTFCs) 488
37.3 Coal-Fired Triple Combined Cycle Power Generation (IGFCs) 490
37.4 Elemental Technology for Triple Combined Cycle Systems 490
37.5 Summary 492
References 493
38 Fuel Cells with Biofuels 494
Abstract 494
38.1 Biofuels 494
38.1.1 Biogas 494
38.1.2 Bioethanol 495
38.1.3 Biodiesel 496
38.1.4 Bio-Oil 496
38.2 H2 Production from Biofuels 498
38.2.1 Structured-Catalysts for Practical Applications 499
38.3 Application of Biofuels to Solid Oxide Fuel Cells 501
38.3.1 Biogas 502
38.3.2 Biodiesel 504
References 506
39 Portable Applications 510
Abstract 510
39.1 Introduction 510
39.2 Application Areas 512
39.3 Direct Liquid Fuel Cells 513
39.3.1 Direct Methanol Fuel Cells (DMFCs) 513
39.3.2 Direct Borohydride Fuel Cell (DBFC) 514
39.4 Polymer Electrolyte Membrane Fuel Cells 516
39.5 Solid Oxide Fuel Cells 518
39.6 Summary 521
References 522
40 Hydrogen Infrastructure 524
Abstract 524
40.1 Energy Infrastructure 524
40.2 Characteristics of Hydrogen Infrastructure 525
40.3 Characteristics of the Methods 526
40.4 Cost Structure of Hydrogen Supply 529
40.5 The Hydrogen Station 530
40.6 Economic Evaluation of Energy Infrastructure 531
References 534
41 Business Model Analysis of Hydrogen Energy 535
Abstract 535
41.1 Characteristics of Energy-Related Business 535
41.2 What Is the Business Model? 537
41.3 Business Model in Energy-Related Field 539
41.4 Case Study 542
41.5 Conclusion 546
References 546
42 Public Acceptance 547
Abstract 547
42.1 Introduction: The Hydrogen Society and Public Acceptance 547
42.2 Definitions 548
42.3 Theoretical Background 550
42.4 Methodology 552
42.4.1 Quantitative Assessment 552
42.4.2 Qualitative Assessment 553
42.5 Current Status: Awareness, Perception, and Opinion 553
42.5.1 Japan 554
42.5.2 Europe/Germany 557
42.5.3 The United States 559
42.6 Practice 561
42.7 Conclusions 563
References 564
43 Numerical Analysis of the Optimal Distribution of Hydrogen Filling Stations 566
Abstract 566
43.1 Introduction 566
43.2 Simulation Algorithm 567
43.3 Optimal Locations for Hydrogen Stations 568
43.4 Conclusions and Perspectives 570
References 571
44 Hydrogen Energy Education 572
Abstract 572
44.1 Introduction 572
44.2 Education at a Graduate School Level 573
44.3 Educational Courses for Different Levels 576
Reference 578
Erscheint lt. Verlag | 7.9.2016 |
---|---|
Reihe/Serie | Green Energy and Technology | Green Energy and Technology |
Zusatzinfo | XIV, 593 p. 418 illus., 295 illus. in color. |
Verlagsort | Tokyo |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Biomass Fermentation • Fuel cells • Hydride • Hydrogen Energy • Hydrogen Production • Hydrogen Safety • hydrogen storage |
ISBN-10 | 4-431-56042-4 / 4431560424 |
ISBN-13 | 978-4-431-56042-5 / 9784431560425 |
Haben Sie eine Frage zum Produkt? |
Größe: 27,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich