Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Differential and Difference Equations (eBook)

A Comparison of Methods of Solution
eBook Download: PDF
2016 | 1st ed. 2016
XV, 162 Seiten
Springer International Publishing (Verlag)
978-3-319-29736-1 (ISBN)

Lese- und Medienproben

Differential and Difference Equations - Leonard C. Maximon
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green's functions and the associated initial and boundary conditions is presented for differential and difference equations of both arbitrary and second order. A dictionary of difference equations with polynomial coefficients provides a unique compilation of second order difference equations obeyed by the special functions of mathematical physics. Appendices augmenting the text include, in particular, a proof of Cramer's rule, a detailed consideration of the role of the superposition principal in the Green's function, and a derivation of the inverse of Laplace transforms and generating functions of particular use in the solution of second order linear differential and difference equations with linear coefficients.



Leonard Maximon is Research Professor of Physics in the Department of Physics at The George Washington University and Adjunct Professor in the Department of Physics at Arizona State University. He has been an Assistant Professor in the Graduate Division of Applied Mathematics at Brown University, a Visiting Professor at the Norwegian Technical University in Trondheim, Norway, and a Physicist at the Center for Radiation Research at the National Bureau of Standards. He is also an Associate Editor for Physics for the DLMF project and a Fellow of the American Physical Society.

Maximon has published numerous papers on the fundamental processes of quantum electrodynamics and on the special functions of mathematical physics.

Leonard Maximon is Research Professor of Physics in the Department of Physics at The George Washington University and Adjunct Professor in the Department of Physics at Arizona State University. He has been an Assistant Professor in the Graduate Division of Applied Mathematics at Brown University, a Visiting Professor at the Norwegian Technical University in Trondheim, Norway, and a Physicist at the Center for Radiation Research at the National Bureau of Standards. He is also an Associate Editor for Physics for the DLMF project and a Fellow of the American Physical Society. Maximon has published numerous papers on the fundamental processes of quantum electrodynamics and on the special functions of mathematical physics.

Preface.

Introduction.

1 Operators.

2 Solution of homogeneous and inhomogeneous linear
equations.
2.1 Variation of constants. 2.2 Reduction of order when one solution to the
homogeneous equation is known.

3 First order homogeneous and inhomogeneous linear
equations.

4 Second-order homogeneous and inhomogeneous equations.

5 Self-adjoint linear equations.

6 Green’s function.
6.1 Differential equations. 6.2 Difference equations.

7 Generating function, z-transforms, Laplace transforms and
the solution of linear differential and difference equations.
7.1 Laplace transforms and the solution of linear differential equations  with constant coefficients. 7.2 Generating
functions and the solution of linear difference equations with constant
coefficient. 7.3 Laplace transforms and the solution of linear differential
equations with polynomial coefficients. 7.4 Alternative method for the solution
of homogeneous linear differential equations with linear coefficients.  7.5 Generating functions and the solution of
linear difference equations with polynomial coefficients. 7.6 Solution of
homogeneous linear difference equations with linear coefficients.

8 Dictionary of difference equations with polynomial
coefficients.

Appendix A: Difference operator.

Appendix B: Notation.

Appendix C: Wronskian Determinant.

Appendix D: Casoratian Determinant.

Appendix E: Cramer’s Rule.

Appendix F: Green’s function and the Superposition
principle.

Appendix G: Inverse Laplace transforms and Inverse
Generating functions.

Appendix H: Hypergeometric function.

Appendix I:  Confluent
Hypergeometric function.

Appendix J. Solutions of the second kind.

Bibliography.

Erscheint lt. Verlag 18.4.2016
Zusatzinfo XV, 162 p.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik
Schlagworte Casoratian determinant • Classical hypergeometric functions • Confluent hypergeometric functions • Difference Equations • Green’s function and the superposition principle • Green’s function and the superposition principle • Method of variation of constants • Ordinary differential equations • Proof of Cramer's rule • Solution of linear difference equations • Solution of linear differential equations • Special functions of mathematical physics • Wronskian determinant
ISBN-10 3-319-29736-8 / 3319297368
ISBN-13 978-3-319-29736-1 / 9783319297361
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
für Studierende der Natur- und Ingenieurwissenschaften

von Heribert Stroppe; Peter Streitenberger; Eckard Specht

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95