Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices (eBook)

eBook Download: PDF
2015 | 1st ed. 2015
XIII, 193 Seiten
Springer International Publishing (Verlag)
978-3-319-25805-8 (ISBN)

Lese- und Medienproben

Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices - Benjamin Lingnau
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.




Benjamin Lingnau received his B.Sc in physics in 2009 and his M.Sc in 2011 from TU Berlin. He graduated and received the Dr. rer. nat. from TU Berlin in 2015. His scientific interests include nonlinear laser dynamics and dynamics of semiconductor quantum-dot optoelectronic devices. He has authored and co-authored 18 peer-reviewed scientific papers.

Benjamin Lingnau received his B.Sc in physics in 2009 and his M.Sc in 2011 from TU Berlin. He graduated and received the Dr. rer. nat. from TU Berlin in 2015. His scientific interests include nonlinear laser dynamics and dynamics of semiconductor quantum-dot optoelectronic devices. He has authored and co-authored 18 peer-reviewed scientific papers.

Supervisors' Foreword 6
Abstract 8
Acknowledgments 10
Contents 11
1 Introduction 14
1.1 Light-Matter Interaction in Semiconductors 14
1.2 Semiconductor Lasers 17
1.3 Semiconductor Lasers as Dynamical Systems 19
1.4 Semiconductor Quantum-Dots 20
1.5 Outline of the Thesis 22
References 23
2 Theory of Quantum-Dot Optical Devices 25
2.1 Introduction 25
2.2 Charge-Carrier Scattering in Quantum-Dot Structures 26
2.2.1 Coulomb-Scattering of Charge Carriers 28
2.2.2 Electron-Hole Picture 32
2.2.3 Detailed Balance 33
2.2.4 Carrier-Phonon Scattering 35
2.3 Light-Matter Interaction 37
2.3.1 Electric Field Dynamics 38
2.3.2 Maxwell--Bloch Equations 41
2.4 Quantum-Dot Laser Rate Equations 44
2.4.1 Maxwell--Bloch Laser Rate Equations 44
2.4.2 Adiabatically Eliminated Polarization 49
2.4.3 Modeling of Spontaneous Emission 51
2.4.4 Carrier-Induced Gain and Refractive Index Changes 53
2.5 Quantum-Dot Laser Carrier-Heating Model 55
2.5.1 Charge-Carrier Energy and Temperature 55
2.5.2 Carrier Heating by Auger-Scattering Processes 57
2.5.3 Energy Balance Equations 58
References 59
3 Quantum-Dot Laser Dynamics 64
3.1 Introduction 64
3.2 Laser Dynamics---Relaxation Oscillations 65
3.2.1 Relaxation Oscillations in Two-Variable Laser Equations 66
3.2.2 Turn-On Dynamics of Quantum-Dot Lasers 69
3.2.3 Influence of Charge-Carrier Scattering 74
3.3 Minimal Model for Quantum-Dot Laser Dynamics 77
3.3.1 Linearization and Eigenvalue Problem 79
3.3.2 Asymptotic Analysis---Relaxation Oscillations 82
3.4 Modulation Response of Quantum-Dot Lasers 87
3.4.1 Small-Signal Response 87
3.5 Amplitude-Phase Coupling in Quantum-Dot Lasers 93
3.5.1 The Linewidth-Enhancement Factor ? 94
3.5.2 Charge-Carrier-Induced Susceptibility in Quantum-Dot Lasers 95
3.6 Dynamics Under Optical Injection 100
3.6.1 Quantum-Dot Laser Model with Optical Injection 101
3.6.2 Injection Locking of Quantum-Dot Lasers 103
3.6.3 Dependence on the Quantum-Dot Structure and Pump-Current 108
3.6.4 Evaluation of the ?-Factor from Optical Injection 112
3.6.5 Comparison with ?-Factor-Based Models 115
3.7 Optical Injection---Numerical Path Continuation 122
3.7.1 Quantum-Dot Laser Model Simplification 123
3.7.2 Path Continuation Results 128
3.7.3 Dependencies on Scattering and Reservoir Loss Rates 131
3.7.4 Summary 133
3.8 Dynamics Under Optical Feedback 134
3.8.1 Quantum-Dot Laser Model with Optical Feedback 134
3.8.2 Quantum-Dot Laser Dynamics Under Optical Feedback 136
3.9 Small-Signal Frequency Response of Quantum-Dot Lasers 142
3.9.1 Evaluation of the Frequency and Amplitude Modulation Indices 142
3.9.2 Numerical Evaluation of FM/AM Measurements 143
3.9.3 Influence of Scattering Rates and Reservoir Losses 146
3.10 Conclusion 148
References 150
4 Quantum-Dot Optical Amplifiers 158
4.1 Introduction 158
4.2 Quantum-Dot Semiconductor Optical Amplifier Model 159
4.2.1 Electric Field Propagation 160
4.2.2 Quantum-Dot Material Equations 161
4.2.3 Modeling of Spontaneous Emission 163
4.3 Large-Signal Amplification in Quantum-Dot Amplifiers 165
4.3.1 Calculation of Amplified Spontaneous Emission Spectra 166
4.3.2 Gain Saturation 170
4.3.3 Amplification of Optical Data Streams 172
4.4 Multi-State Operation of Quantum-Dot Amplifiers 175
4.5 Coherent Transients in Quantum-Dot Amplifiers 180
4.5.1 Rabi-Oscillations in Quantum-Dot Semiconductor Amplifiers 182
4.5.2 Comparison with Experimental Measurements 186
4.6 Conclusion 191
References 193
5 Summary and Outlook 198
Appendix A 201

Erscheint lt. Verlag 14.12.2015
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XIII, 193 p. 88 illus., 25 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Nonequilibrium charge carrier dynamics • optical amplifiers • Optical data communication • Optical datastream amplification • Optical Injection • Quantum-dot amplifier • Quantum-dot laser • Quantum-dot optical devices • Semiconductor quantum-dots
ISBN-10 3-319-25805-2 / 3319258052
ISBN-13 978-3-319-25805-8 / 9783319258058
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich