Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Classical and Quantum 6j-symbols - J. Scott Carter, Daniel E. Flath, Masahico Saito

The Classical and Quantum 6j-symbols

Buch | Softcover
176 Seiten
1995
Princeton University Press (Verlag)
978-0-691-02730-2 (ISBN)
CHF 119,95 inkl. MwSt
  • Lieferbar (Termin unbekannt)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory of sl(2), both classical and quantum. Covering representations of U(sl(2)), quantum sl(2), the quantum trace and color representations, and the Turaev-Viro invariant, it is useful to graduate students and professionals.
Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory of sl(2), both classical and quantum. Covering representations of U(sl(2)), quantum sl(2), the quantum trace and color representations, and the Turaev-Viro invariant, this work is useful to graduate students and professionals. The classic subject of representations of U(sl(2)) is equivalent to the physicists' theory of quantum angular momentum. This material is developed in an elementary way using spin-networks and the Temperley-Lieb algebra to organize computations that have posed difficulties in earlier treatments of the subject. The emphasis is on the 6j-symbols and the identities among them, especially the Biedenharn-Elliott and orthogonality identities. The chapter on the quantum group Ub-3.0 qb0(sl(2)) develops the representation theory in strict analogy with the classical case, wherein the authors interpret the Kauffman bracket and the associated quantum spin-networks algebraically. The authors then explore instances where the quantum parameter q is a root of unity, which calls for a representation theory of a decidedly different flavor.
The theory in this case is developed, modulo the trace zero representations, in order to arrive at a finite theory suitable for topological applications. The Turaev-Viro invariant for 3-manifolds is defined combinatorially using the theory developed in the preceding chapters. Since the background from the classical, quantum, and quantum root of unity cases has been explained thoroughly, the definition of this invariant is completely contained and justified within the text.

J. Scott Carter is Associate Professor and Daniel E. Flath is Associate Professor, both in the Department of Mathematics at the University of South Alabama. Masahico Saito is Assistant Professor of Mathematics at the University of South Florida.

* Representations of U(sl(2)) * Quantum sl(2) * The Quantum Trace and Color Representations * The Turaev-Viro Invariant

Erscheint lt. Verlag 31.12.1995
Reihe/Serie Mathematical Notes
Verlagsort New Jersey
Sprache englisch
Maße 152 x 235 mm
Gewicht 255 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Quantenphysik
ISBN-10 0-691-02730-7 / 0691027307
ISBN-13 978-0-691-02730-2 / 9780691027302
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90