Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Advances in Organic Crystal Chemistry (eBook)

Comprehensive Reviews 2015

Rui Tamura, Mikiji Miyata (Herausgeber)

eBook Download: PDF
2015 | 1st ed. 2015
X, 706 Seiten
Springer Tokyo (Verlag)
978-4-431-55555-1 (ISBN)

Lese- und Medienproben

Advances in Organic Crystal Chemistry -
Systemvoraussetzungen
309,23 inkl. MwSt
(CHF 299,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

For the last decade, the topics of organic crystal chemistry have become diversified, and each topic has been substantially advanced in concert with the rapid development of various analytical and measurement techniques for solid-state organic materials. The aim of this book is to systematically summarize and record the recent notable advances in various topics of organic crystal chemistry involving liquid crystals and organic-inorganic hybrid materials that have been achieved mainly in the last 5 years or so. The authors are invited members of the Division of Organic Crystals, The Chemical Society of Japan (CSJ), and prominent invited experts from abroad. This edited volume is planned to be published periodically, at least every 5 years, with contributions by prominent authors in Japan and from abroad.


For the last decade, the topics of organic crystal chemistry have become diversified, and each topic has been substantially advanced in concert with the rapid development of various analytical and measurement techniques for solid-state organic materials. The aim of this book is to systematically summarize and record the recent notable advances in various topics of organic crystal chemistry involving liquid crystals and organic-inorganic hybrid materials that have been achieved mainly in the last 5 years or so. The authors are invited members of the Division of Organic Crystals, The Chemical Society of Japan (CSJ), and prominent invited experts from abroad. This edited volume is planned to be published periodically, at least every 5 years, with contributions by prominent authors in Japan and from abroad.

Preface 6
Contents 8
Part I Nucleation and Crystal Growth 12
1 Photochemically Induced Crystallization of Protein 13
1.1 Introduction 13
1.2 Mechanism of Photo-Induced Crystallization 14
1.3 Experiment on Photo-Induced Crystallization of Protein 15
1.4 Photochemical Reaction of Protein 16
1.5 Dimer as a Template Molecule that Grows into a Crystal 21
1.6 Conclusion 23
References 23
2 Ultrasonication-Forced Amyloid Fibrillation of Proteins 25
Abbreviations 25
2.1 Introduction 26
2.2 Ultrasonication-Induced Amyloid Fibrillation 27
2.3 Developing a High-Throughput Assay System 28
2.3.1 Combined Use of Ultrasonication and a Microplate Reader 28
2.3.2 Measurements of Ultrasonic Power 30
2.3.3 Minimizing the Well-Dependent Variation 31
2.3.4 High-Throughput Analysis of Amyloid Fibrillation with HANABI 33
2.4 Ultrasonication-Dependent Crystallization of Lysozyme 34
2.5 Mechanism of Ultrasonication-Forced Fibrillation 35
2.6 Conclusion 37
References 37
3 In Situ Solid-State NMR Studies of Crystallization Processes 40
3.1 Introduction 40
3.2 Essential Background to High-Resolution Solid-State NMR 42
3.3 Experimental Aspects of In Situ Solid-State NMR Studies of Crystallization Processes 43
3.4 Applications of In Situ Solid-State NMR to Study Polymorphic Evolution During Crystallization 46
3.5 Applications of In Situ Solid-State NMR for Polymorph Discovery 51
3.6 Combined Liquid- and Solid-State In Situ Crystallization NMR: “CLASSIC NMR” 55
3.7 Future Prospects 60
References 60
4 Nucleation and Crystal Growth in Limited Crystallization Field 63
4.1 Introduction 63
4.2 Supersaturation in Crystallization Operation 64
4.3 Quality of Crystalline Particles 66
4.4 Milli-segmented Flow Crystallizer 66
4.4.1 Anti-Solvent Crystallization 66
4.4.2 Nucleation Control 68
4.4.3 Production of Fine Crystals 69
4.5 Templated Crystallization 70
4.5.1 Nucleation at the Interface 70
4.5.2 Templated Crystallization 71
4.5.3 Nucleation Trigger 73
4.6 Liquid-Liquid Interface in Emulsion 74
4.6.1 Liquid-Liquid Interface 74
4.6.2 Production of Particles by Using Liquid-Liquid Interface 75
4.6.2.1 Observation of Crystallization at Liquid-Liquid Interface 75
4.6.2.2 Production of Particles by Using Liquid-Liquid Interface in Emulsion 76
4.7 Conclusions 78
References 79
5 Particle Engineering with CO2-Expanded Solvents: The DELOS Platform 81
5.1 Introduction 81
5.2 Compressed Fluids (CF): Green Solvents for Particle Engineering 83
5.2.1 CF as a Solvent: Rapid Expansion of Supercritical Solution (RESS) 89
5.2.2 CF as an Antisolvent 90
5.2.3 CF as a Solute: Particles from Gas-Saturated Solutions (PGSS) 91
5.3 CF as a Cosolvent: DELOS (Depressurization of an Expanded Liquid Organic Solution) 91
5.4 Scale-Up of the DELOS Process 98
5.5 Conclusions 99
Annexes: Vanishing Point Method 99
References 100
6 Addressing the Stochasticity of Nucleation: Practical Approaches 102
6.1 Introduction 102
6.2 Theoretical Background 103
6.2.1 Critical Nucleus 103
6.2.2 Nucleation Kinetics 104
6.2.3 Critical Supersaturation 105
6.2.4 Experimental Considerations 105
6.3 Studying Nucleation: An Unpredictable Phenomenon 106
6.3.1 Statistical Studies of Spontaneous Nucleation 106
6.3.1.1 Nucleation in Nanoliter Droplets 106
6.3.1.2 Nucleation in Picoliter to Femtoliter Droplets 111
6.3.2 Influence of Volume on Nucleation 113
6.3.3 Predictive Study of Induced Nucleation 114
6.3.3.1 Mechanical Action and Confinement by Volume 115
6.3.3.2 Electrical Field and Confinement by Gel 116
6.4 Conclusion 117
References 118
7 Metastability of Supersaturated Solution and Nucleation 121
7.1 Introduction 122
7.2 Stochastic or Deterministic 122
7.2.1 Experiments by Kadam et al. 123
7.2.2 Why Is Nucleation Stochastic Only When Sample Volume Is Small? 123
7.2.3 Effect of Sample Volume on MSZW and Induction Time 124
7.3 What Is Happening Before MSZW and Induction Time Are Reached? 125
7.3.1 Relaxation Time 125
7.3.2 Is MSZW Dependent on Induction Time? 126
7.3.3 Effect of Thermal History 127
7.3.4 Effect of Agitation 128
7.4 Relation of Nucleation to MSZW and Induction Time 130
7.4.1 Nývlt's Model 130
7.4.2 Sangwal's Model 130
7.4.3 Model of Kashchiev et al. 131
7.4.4 Model of Harano et al. 131
7.4.5 Surface Energy Deduced from Induction Time Data 132
7.5 Model of Kubota et al. 132
7.5.1 Analytical Solution of MSZW and Induction Time: A Limiting Case 132
7.5.2 Numerical Analysis of MSZW and Induction Time: A General Case 134
7.5.3 Explanation of the Agitation Effect by Secondary Nucleation-Mediated Mechanism 137
7.6 Relevance to Industrial Crystallization 139
7.6.1 Is MSZW the Region Where Spontaneous Nucleation Is Avoided? 139
7.6.2 A Unified Understanding of MSZW, Induction Time, and Batch Crystallization Operation 140
7.7 Conclusions 140
References 141
Part II Crystal Structure Determination and MO Calculation 145
8 Structure Determination of Organic Molecular Solids from Powder X-Ray Diffraction Data: Current Opportunities and State of the Art 146
8.1 Introduction 146
8.2 The Direct-Space Strategy for Structure Solution from Powder XRD Data 149
8.3 Examples of Structure Determination from Powder XRD Data in Organic Solid-State Chemistry 151
8.3.1 Structure Determination of Materials that Are Difficult to Prepare as Single Crystals Under Conventional Crystallization Conditions 151
8.3.1.1 Oligopeptides 151
8.3.1.2 An Early-Generation Dendrimeric Material 154
8.3.1.3 Amino Acids 156
8.3.1.4 Pharmaceutical Materials 158
8.3.2 Structure Determination of New Materials Prepared by Solid-State Mechanochemical Processes 159
8.3.3 Structure Determination of Materials Prepared by Solid-State Dehydration/Desolvation Processes 162
8.3.4 Structure Determination of Products from Solid-State Reactions 164
8.3.5 Structure Determination of Materials Produced by Rapid Precipitation from Solution 167
8.4 Concluding Remarks 168
References 169
9 Magnetically Oriented Microcrystal Arrays and Suspensions: Application to Diffraction Methods and Solid-State NMR Spectroscopy 172
9.1 Introduction 172
9.2 Magnetic Orientation of Crystals 173
9.2.1 Magnetic Susceptibility of Diamagnetic Crystals 173
9.2.2 Anisotropic Magnetic Energy 175
9.2.2.1 Under a Static Field 175
9.2.2.2 Under a Rotating Field 176
9.2.2.3 Under a Modulated Rotating Field 177
9.2.3 Thermal Fluctuation 177
9.2.3.1 Size Dependence 177
9.2.3.2 Anisotropy of Fluctuations 178
9.2.4 Orientation Kinetics 179
9.2.4.1 Orientation Kinetics of a Rod-Shaped Particle 180
9.2.4.2 Three Regimes of Orientation Kinetics 180
9.3 Single-Crystal XRD Analyses from a Powder 181
9.3.1 Magnetic Orientation of Microcrystalline Powders 181
9.3.1.1 Suspending Fluids and Microcrystals 182
9.3.1.2 Magnetic Fields 182
9.3.2 Single-Crystal X-Ray Diffraction Analyses Using 3D MOMAs 183
9.3.2.1 Preparation and XRD Measurement of 3D MOMAs 183
9.3.2.2 Results 183
9.3.3 XRD of 1D MOMSs 186
9.4 Single-Crystal Solid-State NMR Spectroscopy 187
9.4.1 Single-Crystal NMR Spectroscopy Using MOMAs 188
9.4.1.1 CST of Crystals 188
9.4.1.2 Single-Crystal NMR Analyses of an l-Alanine MOMA [25] 188
9.5 Conclusions 190
References 191
10 Analysis of Intermolecular Interactions byAb Initio Molecular Orbital Calculations: Importance for Studying Organic Crystals 192
10.1 Introduction 192
10.2 Ab Initio Calculation of Intermolecular Interaction 194
10.3 CH/ Interaction 198
10.4 Cation/ Interaction of Aromatic Cations 201
10.5 Interactions of Ammonium and Alkyl Ammonium with Benzene 203
10.6 Summary 204
References 204
Part III Crystal Structure 206
11 Construction of Aromatic Folding Architecture: Utilization of Ureylene and Iminodicarbonyl Linkers 207
11.1 Introduction 207
11.2 Foldamers Based on Ureylene Linker 208
11.2.1 U-Shaped Conformation of N,N-Disubstituted Aromatic Ureas 208
11.2.2 Hydrogen-Bonding Approach Using U-Shaped Ureadicarboxylic Acids as Building Blocks 211
11.2.3 S-Shaped Aromatic Ureadicarboxylic Acid 216
11.3 Foldamers Based on Iminodicarbonyl Linker 217
11.3.1 U-Shaped Aromatic Acyclic Imides 217
11.3.2 Chiral Photochromic System Based on Reversible [4+4] Photocycloaddition of S-Shaped Iminodicarbonyl-Based Foldamers 219
11.3.3 Chirality Amplification 221
11.4 Stacked Ribbon-Type Foldamers 223
11.5 Conclusion 224
References 225
12 Crystal Engineering of Coordination Networks Using Multi-interactive Ligands 227
12.1 Introduction 227
12.1.1 General Backgrounds 227
12.1.2 Instant Synthesis 229
12.2 Network Formation Using Multi-interactive TPHAP 230
12.2.1 TPHAP: The Multi-interactive Ligand 230
12.2.2 Trapping of Kinetic Network by Utilization of Multi-interactivity of TPHAP 232
12.3 Effects of Solvent Additives on the Network Formation Using Multi-interactive Ligand 237
12.3.1 Crystallization from Nonaromatic Solvents 238
12.3.2 Crystallization from Aromatic Solvents 239
12.4 Summary 242
References 242
13 Azacalixarene: An Ever-Growing Class in the Calixarene Family 245
13.1 Introduction 245
13.2 Synthetic Chemistry 246
13.2.1 Single-Step Synthesis 246
13.2.2 Non-convergent Stepwise Synthesis 251
13.2.3 Convergent Fragment-Coupling Synthesis 253
13.2.4 Post-Functionalization 255
13.3 Host–Guest Chemistry in the Solid State 256
13.3.1 Metal Ion Complexation 257
13.3.2 Fullerene Complexation 260
13.3.3 Gas Sorption 261
13.4 Concluding Remarks 263
References 264
Part IV Polymorphism 266
14 Polymorphism in Molecular Crystals and Cocrystals 267
14.1 Introduction 268
14.1.1 Scope of the Book Chapter 268
14.1.2 Different Solid Forms 268
14.1.3 Significance of Polymorphism in Pharmaceuticals 269
14.2 Polymorphism: Historical to Present 271
14.3 Theoretical Aspects of Polymorphism 273
14.3.1 Thermodynamic Relationships in Polymorphs 273
14.3.1.1 Heat of Transition Rule 273
14.3.1.2 Heat of Fusion Rule 274
14.3.1.3 Entropy of Fusion Rule 274
14.3.1.4 Density Rule 275
14.3.1.5 Infrared Rule 275
14.4 Polymorph Screening and Characterization: Conventional Methods and Recent Trends 275
14.4.1 Crystallization from Solvents 275
14.4.1.1 The Role of Supersaturation 277
14.4.1.2 The Role of Temperature 277
14.4.1.3 The Role of Pressure 278
14.4.2 Anti-solvent Crystallization 278
14.4.3 Polymorph Control by Supercritical Fluids 279
14.4.4 Additive-Induced Polymorph Nucleation 280
14.4.5 Grinding-Assisted Polymorph Screening 280
14.4.6 Polymer-Induced Heteronucleation 280
14.4.7 Kinetic Methods: Rotavap and Spray-Drying Techniques 281
14.4.8 High-Throughput Screening 283
14.5 Characterization of Polymorphs 284
14.6 Classification of Polymorphs 288
14.6.1 Classifications Based on Structural Differences 288
14.6.1.1 Conformational Polymorphs 289
14.6.1.2 Synthon or Hydrogen-Bond Polymorphism 289
14.6.1.3 Packing Polymorphs 289
14.6.1.4 Tautomeric Polymorphs 291
14.6.2 Classifications Based on Appearance from Crystallization Experiments 292
14.6.2.1 Concomitant Polymorphs 292
14.6.2.2 Disappearing Polymorphs 293
14.7 Impact of Polymorphism on the Physicochemical Properties 294
14.7.1 Solubility and Dissolution Rate 294
14.7.2 Bioavailability 294
14.7.3 Photoreactivity 295
14.7.4 Stability 296
14.8 Statistical Analysis of Polymorphs 296
14.9 Conclusions 297
References 298
15 Hydration/Dehydration Phase Transition Mechanism in Organic Crystals Investigated by Ab Initio Crystal Structure Determination from Powder Diffraction Data 301
15.1 Introduction 301
15.2 Dehydration/Hydration Transformations of Pharmaceuticals 303
15.3 Vapor-Induced Crystalline Transformations 311
15.4 Solid-State Photoreaction in Organic Crystal 314
15.5 Summary 316
References 317
16 Characteristics of Crystal Transitions Among Pseudopolymorphs 319
16.1 Introduction 319
16.2 Overview of Structure Transitions Among Pseudopolymorphs of Nucleoside and Nucleotide Hydrates 321
16.3 Characteristics of Transition Illustrated by Examples 322
16.3.1 Transitions Associated with Prominent Conformational Changes 322
16.3.2 Transitions Accompanied by Sliding of Molecular Layers 326
16.3.3 Cyclic Transitions 327
16.3.4 Bifurcation of Transitions Depending on Physical Conditions 330
16.4 Mechanisms of Transition Among Hydrates 331
16.5 Use of Complementary Methods 332
16.6 Concluding Remarks 334
References 336
17 Anomalous Formation Properties of Nicotinamide Co-crystals 338
17.1 Introduction 338
17.2 An Extraordinary System of Co-crystals NIC-RMA and Its Anomalous Formation Properties 340
17.2.1 Discovery of NIC-RMA Co-crystals in Many Stoichiometric Ratios 340
17.2.2 Formation Volumes of NIC-RMA Co-crystals: Co-crystallization of NIC and RMA Expands Volume 341
17.2.3 Formation Enthalpies of NIC-RMA Co-crystals: Co-crystallization of NIC and RMA Decreases Enthalpy 342
17.3 Anomalous Formation Properties of NIC Co-crystals 344
17.3.1 NIC Co-crystals Generally Have Positive Formation Volumes 344
17.3.2 Most NIC Co-crystals Have Negative Formation Energies 347
17.3.3 The Formation of NIC Co-crystals Generally Lowers Energy But Expands Volume, in Contrast to Most Physical Processes 348
17.4 Shorter and Stronger Hydrogen Bonds Are the Likely Cause for the Anomalous Formation Properties of NIC Co-crystals 349
17.5 Different Conformers of NIC Can Form Co-crystals of Comparable Stability 351
17.6 Conclusion 352
References 352
18 Isothermal Crystallization of Pharmaceutical Glasses: Toward Prediction of Physical Stability of Amorphous Dosage Forms 355
18.1 Introduction 355
18.2 Temperature- and Pressure-Controlled Crystallization 357
18.3 Isothermal Crystallization Without Surface Effects 358
18.3.1 Experimental Protocol 358
18.3.2 Determination of Crystallinity 359
18.3.3 Analysis of the Crystallization Process 361
18.4 Influence of Surface Effects on Crystallization Behavior 363
18.4.1 Role of Surface in Crystallization Behavior 363
18.4.2 Experimental Protocol 363
18.4.3 Analysis of Crystallization Process 363
18.5 Prediction of the Physical Stability of Pharmaceutical Glasses 364
18.6 Relevance to Formulation Stability 365
18.7 Summary 366
References 367
Part V Chirality 369
19 Twofold Helical Molecular Assemblies in Organic Crystals: Chirality Generation and Handedness Determination 370
19.1 Introduction 371
19.2 Development of Our Research for Twofold Helical Assemblies 372
19.3 Chirality Generation and Handedness of Twofold Helical Assemblies 375
19.3.1 Chirality Generation in Space Groups for Crystallography 375
19.3.2 Chirality Generation in Three-Dimensional Space Geometry 376
19.3.2.1 Four Points for Chirality Generation 376
19.3.2.2 Multipoint Approximation for Chirality Generation 377
19.3.2.3 Chirality Generation in Twofold Helical Assemblies of Lines and Faces 377
19.3.3 Handedness Determination of Twofold Helical Assemblies 379
19.3.3.1 Supramolecular Tilt Chirality for Handedness Determination 379
19.3.3.2 Comparison Between Molecular and Supramolecular Chirality 380
19.3.4 Three-Axial Chirality of Twofold Helical Assemblies 381
19.4 Chirality Generation in Bundles of Twofold Helical Assemblies 382
19.4.1 Symbols of Twofold Helical Assemblies with Three-Axial Chirality 382
19.4.2 Combinations of Twofold Helical Assemblies with Three-Axial Chirality 383
19.4.3 Bundles of the Preferred Twofold Helices 384
19.4.4 Chirality Generation in Bundles of the Preferred Twofold Helices 384
19.5 Linkage Between Molecular Structures and Supramolecular Chirality 386
19.5.1 Chiral Crystallization of Achiral Molecules 386
19.5.2 Linkage Between Molecular and Supramolecular Chirality 387
19.6 Search for Hidden Supramolecular Chirality 388
19.6.1 Hidden Chirality in Space Groups 388
19.6.2 Hidden Chirality in Hydrogen-Bonding Networks 389
19.6.3 Hidden Chirality of Polymeric Chains 389
19.7 Conclusions and Perspectives 390
References 390
20 Chiral Discrimination in the Solid State: Applications to Resolution and Deracemization 392
20.1 Introduction 392
20.2 What Is Chirality? 393
20.3 The Thermodynamic Aspect of Chiral Discrimination 394
20.3.1 Non-racemizable Enantiomers (Fig. 20.4) 394
20.3.2 What Are the Interests of Detecting a Stable Conglomerate? 395
20.3.3 Racemizable Enantiomers 400
20.4 Structural Aspects of the Chiral Discrimination in the Solid State 402
20.4.1 Crystallographic Requirements for Homochirality 402
20.4.2 Statistical Aspects 403
20.4.3 On the Existence of Clusters of Conglomerates 405
20.4.4 Importance of Solvates in Chiral Discrimination in the Solid State 406
20.4.5 Benefits of Exploring Odd Stoichiometries 410
20.4.6 Detection of Conglomerates 411
20.5 Preferential Crystallization 412
20.5.1 Return to Chiral Discrimination in the Solid State 413
20.5.2 Resolution of Racemic Mixture by Coupling Crystallization and In Situ Racemization in Solution 416
20.6 Conclusion 416
List of Symbols 418
References 418
21 How to Use Pasteur's Tweezers 420
21.1 Introduction 420
21.2 Diastereomeric Resolutions3 422
21.3 Dutch Resolution 425
21.4 Preferential Crystallisation 429
21.4.1 Conglomerates 430
21.4.2 Nucleation 431
21.4.3 Attrition-Induced Deracemisation 433
21.5 Conclusions 439
References 440
22 Total Resolution of Racemates by Dynamic Preferential Crystallization 443
22.1 Introduction 444
22.2 Preferential Crystallization and Dynamic Preferential Crystallization 445
22.3 Total Resolution of Axially Chiral Materials by CIET 446
22.4 Dynamic Resolution of Axially Chiral Materials by CIDT 452
22.5 Conclusion 457
References 457
23 Chiral Recognition by Inclusion Crystals of Amino-Acid Derivatives Having Trityl Groups 461
23.1 Introduction 461
23.2 Trityl-Group Host Design as a Crystal Engineering Tool 463
23.2.1 N,N-Ditrityl Amino Amides [21] 464
23.2.2 N-Trityl Amino-Acid Salt [30] 470
23.3 Summary 478
References 478
Part VI Solid-State Reaction 481
24 Reactions and Orientational Control of Organic Nanocrystals 482
24.1 Introduction 482
24.2 Reactions of Nanocrystals 483
24.2.1 Polymerization of Diolefin Derivatives 484
24.2.2 Polymerization of Diacetylene Derivatives 484
24.2.3 Molecular-Weight Control 486
24.2.4 Surface Functionalization 487
24.2.5 Metal-Shell Coating 488
24.2.6 Valence Isomerization of Diarylethene Derivatives 489
24.3 Orientation Control of Nanocrystals 489
24.3.1 Orientation and Fixation of Polar Nanocrystals 490
24.3.1.1 Application of a Single External Field 490
24.3.1.2 Application of Double External Fields and Orientation Fixation 492
24.3.2 Orientation and Fixation of Nonpolar Nanocrystals 494
24.4 Conclusions 495
References 496
25 Topochemical Polymerization of Amino Acid N-Carboxy Anhydrides in Crystalline State 499
25.1 Introduction 499
25.2 Polymerization Mechanism of Amino Acid NCAs Initiated by Primary Amine 501
25.3 Three Amino Acid NCA Polymerization Systems 501
25.3.1 Solution Polymerization 502
25.3.2 Polymerization in Heterogeneous Systems 502
25.3.3 Solid-State Polymerization 502
25.4 New Type of Topochemical Polymerization 503
25.4.1 Comparison of Solid-State Polymerization and Solution Polymerization 503
25.4.1.1 BLG NCA, MLG NCA, and BLA NCA 503
25.4.1.2 Polymerizations of l-Alanine NCA, l-Valine NCA, l-Leucine NCA, and l-Phenylalanine NCA 503
25.4.1.3 Molecular Weights of Polypeptides 504
25.4.1.4 Polymer Conformation 505
25.4.1.5 Crystal Structure 505
25.4.1.6 Solid-State Polymerization of Racemic Amino Acid NCAs 510
25.5 Conclusion 510
References 511
26 Topochemical Polymerizations and Crystal Cross-Linking of Metal Organic Frameworks 512
26.1 Introduction: Polymerization in a Confined Space 513
26.2 Recent Advances of Topochemical Polymerizations 515
26.3 Crystal Cross-Linking as Topochemical Polymerization 519
26.4 Concluding Remark 524
References 524
Part VII Photoinduced Behavior 526
27 Photoinduced Mechanical Motion of Photochromic Crystalline Materials 527
27.1 Introduction 527
27.2 Photochromism of Diarylethene Crystals 528
27.3 Photoinduced Reversible Crystal Shape Changes 529
27.4 Various Types of Photomechanical Crystals 531
27.5 Theoretical Analysis of Photoinduced Bending Behavior 531
27.6 New Photomechanical Motion: Photoreversible Twisting 536
27.7 Applications of Photomechanical Motion 537
27.8 Summary 538
References 539
28 Photoinduced Reversible Topographical Changes on Photochromic Microcrystalline Surfaces 542
28.1 Introduction 542
28.2 Photoinduced Reversible Topographical Changes on Diarylethene Surface 543
28.3 Measurement of the Activation Energies of Crystal Growth 546
28.4 Photoinduced Reversible Epitaxial Crystal Growth 548
28.5 Photoinduced Reversible Self-Epitaxial Crystal Growth 553
28.6 Photoinduced Reversible-Appearance Moth-Eye Effect Near-IR Region 558
28.7 Conclusion 560
References 560
29 Luminescence Modulation of Organic Crystals by a Supramolecular Approach 562
29.1 Introduction 562
29.2 Organic Salts Composed of Anthracenedisulfonic Acid and Alkyl Amines 564
29.2.1 Advantage of Organic Salts 564
29.2.2 Crystal Structures of Unmodified Anthracene 564
29.2.3 Crystal Structures of ADS Salts 564
29.2.4 Photophysical Properties in Isotropic Solution 569
29.2.5 Solid-State Fluorescence Emission Spectra 569
29.2.6 Solid-State Fluorescence Emission Quantum Yields 571
29.3 Ternary System Composed of ADS Salt and Guest Molecule 573
29.3.1 Construction of Ternary System 573
29.3.2 Crystal Structures of Ternary Systems 574
29.3.3 Fluorescence Properties of Ternary System Depending on Guest Molecules 575
29.3.4 Relationship Between Fluorescence Properties and Molecular Arrangements 576
29.4 Summary 577
References 578
30 Solid-State Circularly Polarized Luminescence of Chiral Supramolecular Organic Fluorophore 580
30.1 Introduction 580
30.2 Solid-State Circularly Polarized Luminescence (CPL) of a Chiral Supramolecular Organic Fluorophore Composed of a One-Dimensional (1D) Column Structure 581
30.3 Solid-State Circularly Polarized Luminescence (CPL) of a Chiral Supramolecular Organic Fluorophore Composed of a Two-Dimensional (2D) Layered Network Structure 584
30.4 Preparation of Spontaneously Resolved Chiral Supramolecular Organic Fluorophore 586
30.5 Solid-State Circularly Polarized Luminescence (CPL) of a Chiral Supramolecular Organic Fluorophore Composed of Achiral Component Molecules 588
30.6 Unclassical Control of Solid-State Circularly Polarized Luminescence (CPL) by Supramolecular Complexation–I 590
30.7 Unclassical Control of Solid-State Circularly Polarized Luminescence (CPL) by Supramolecular Complexation–II 593
30.8 Conclusions 596
References 597
Part VIII Electric and Magnetic Properties 598
31 Relationship Between the Crystal Structures and Transistor Performance of Organic Semiconductors 599
31.1 Introduction 599
31.2 p-Type Organic Semiconductors 601
31.2.1 Acenes 601
31.2.2 Oligomers 605
31.2.3 Tetrathiafulvalenes (TTFs) 607
31.3 n-Type Organic Semiconductors 609
31.3.1 Acenes 609
31.3.2 Heterocyclic Oligomers 609
31.3.3 Other Electron-Accepting Compounds 613
31.4 Summary 615
References 616
32 Photocurrent Action Spectra of Organic Semiconductors 618
32.1 Introduction 618
32.2 Extrinsic and Intrinsic Photogeneration 619
32.3 A Mathematical Framework for Photocurrent Measurements 623
32.4 Photogeneration, Quantum Yield, and the Energy Gap 627
32.5 Experimental Determination of the Energy Gap 628
32.6 Practical Photoconductivity Measurements 629
32.7 Photocurrent Spectroscopy of Pentacene Thin Films 631
32.7.1 Details of the Experiment and Apparatus 631
32.7.2 Film Thickness Dependence 633
32.7.3 Bias Voltage and Photon Flux Dependence 635
32.7.4 Temperature Dependence 636
32.7.5 Electrode Dependence 637
32.7.6 Transport Energy 639
32.8 Final Thoughts 641
References 641
33 Electro-Responsive Columnar Liquid Crystal Phases Generated by Achiral Molecules 644
33.1 Introduction 644
33.1.1 First Stage of the History of ER-CLCs 645
33.1.1.1 Laterally Polar Columns Using Chiral Oval Molecules 645
33.1.1.2 Molecular Shape Approaches for Realizing Polar Columns 646
33.1.2 Recent Studies of ER-CLCs 646
33.1.2.1 ER-CLCs of Benzene Triamides 646
33.1.2.2 Stacking Large Aromatic Molecules via Intermolecular Hydrogen Bonds 647
33.1.2.3 Switchable FCLC Compounds 649
33.1.2.4 ER-CLCs of Various Amides 650
33.1.2.5 Ionic CLCs 653
33.1.3 Recent Advances in Studies of Ferroelectrically Switchable Ureas 654
33.1.3.1 Highly Responsive Switchable Ureas 654
33.1.3.2 Substituent Effect on Liquid Crystallinity and Responsiveness in the Ureas 656
33.1.3.3 Strengthening the Intermolecular Interactions 657
33.1.4 Conclusion 657
References 659
34 Crystal Engineering Approach Toward Molecule-Based Magnetic Materials 660
34.1 Introduction 660
34.2 Magnetic Measurement of Organic Radical Solid 662
34.3 Crystal Engineering Approach 667
34.4 Magnetism of Nitronyl Nitroxide Derivatives with NH Site 668
34.5 Magnetism of Azaindole Nitronyl Nitroxide Derivatives 673
34.6 Conclusions 678
References 678
35 Observation of Magnetoelectric Effect in All-Organic Ferromagnetic and Ferroelectric Liquid Crystals in an Applied Magnetic Field 680
35.1 Introduction 680
35.2 Molecular Design and Synthesis [24, 25] 681
35.3 Ferroelectricity [25, 29–31] 684
35.4 Magneto-LC Effects [26–28, 32, 33] 685
35.5 Magnetoelectric Effect [34, 35] 690
35.6 Summary and Prospects 694
References 696
ERRATUM 698

Erscheint lt. Verlag 6.8.2015
Zusatzinfo X, 706 p. 548 illus., 164 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Geowissenschaften Mineralogie / Paläontologie
Technik
Schlagworte chirality • crystal structure • Crystal structure determination and MO calculation • Electric and magnetic properties • Nucleation and crystal growth • Photo-induced behavior • Polymorphism • Solid-state reaction
ISBN-10 4-431-55555-2 / 4431555552
ISBN-13 978-4-431-55555-1 / 9784431555551
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 31,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95