Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits (eBook)
XIV, 231 Seiten
Springer International Publishing (Verlag)
978-3-319-21572-3 (ISBN)
This work describes theoretical and experimental advances towards the realization of a hybrid quantum processor in which the collective degrees of freedom of an ensemble of spins in a crystal are used as a multi-qubit register for superconducting qubits. A memory protocol made of write, read and reset operations is first presented, followed by the demonstration of building blocks of its implementation with NV center spins in diamond. Qubit states are written by resonant absorption of a microwave photon in the spin ensemble and read out of the memory on-demand by applying Hahn echo refocusing techniques to the spins. The reset step is implemented in between two successive write-read sequences using optical repumping of the spins.
Cécile Grèzes received the B.S. degree from the Ecole Normale supérieure, Paris, France, in 2009 and her Ph.D. from the University Paris VI in 2014. Her thesis work was performed at the Commissariat à l'énergie atomique on experimental quantum information processing with Josephson superconducting circuits and spins in crystal. Since 2015, she has been working on the development of nonvolatile magnetic memory in the electrical engineering department at the University of California Los Angeles.
Cécile Grèzes received the B.S. degree from the Ecole Normale supérieure, Paris, France, in 2009 and her Ph.D. from the University Paris VI in 2014. Her thesis work was performed at the Commissariat à l’énergie atomique on experimental quantum information processing with Josephson superconducting circuits and spins in crystal. Since 2015, she has been working on the development of nonvolatile magnetic memory in the electrical engineering department at the University of California Los Angeles.
Supervisor's Foreword 6
Acknowledgments 8
Abstract 9
Contents 11
1 Introduction 15
1.1 Rationale for the Hybrid Way 15
1.2 Spin Ensemble Quantum Memory Principle 18
1.3 Storing a Qubit State in a Spin Ensemble (Write) 20
1.4 Retrieving Few-Photon Fields Stored in a Spin Ensemble (Read) 24
1.5 NV Clock Transitions for Long Coherent Storage 27
1.6 Towards an Operational Quantum Memory 28
References 30
2 Background 33
2.1 Superconducting Circuits and Microwave Engineering 33
2.1.1 Superconducting Resonators 33
2.1.2 Josephson Junction Based Circuits 43
2.1.3 Circuit Quantum Electrodynamics 53
2.2 NV Center Spins in Diamond 59
2.2.1 Structure 59
2.2.2 The NV Center Spin Qubit 60
2.2.3 Coherence Times 65
2.3 Coupling Ensembles of NV Center Spins to Superconducting Circuits 67
2.3.1 Single Spin-Resonator Coupling 67
2.3.2 Spin Ensemble-Resonator Coupling: Collective Effects 68
2.3.3 The Resonator-Spins System in the Low-Excitation Regime 79
2.3.4 The Resonator-Spins System Under Strong Drive Powers 88
References 89
3 Proposal: A Spin Ensemble Quantum Memory for Superconducting Qubits 92
3.1 Spin-Based Quantum Memory 92
3.1.1 Motivations 92
3.1.2 Spin Ensemble Quantum Memory: Principles 93
3.2 Spin Ensemble Quantum Memory Protocol 95
3.2.1 The Write Step: Storage of N Quantum States |?1rangleƒ|?nrangle 95
3.2.2 The Read Step: On-Demand Retrieval of |?irangle 96
3.2.3 The Full Quantum Memory Protocol 99
3.3 Simulations 100
References 102
4 Experiment 1 (Write): Coherent Storage of Qubit States into a Spin Ensemble 105
4.1 State of the Art and Principle of the Experiment 105
4.1.1 State of the Art 105
4.1.2 Strong Coupling of NVs to a Superconducting Resonator 106
4.1.3 Principle of the Experiment 108
4.2 Experimental Realization 110
4.2.1 The Hybrid Quantum Circuit 110
4.2.2 Measurement Setup 116
4.3 Operating the Hybrid Quantum Circuit 122
4.3.1 Superconducting Circuit Characterization 122
4.3.2 Transferring Qubit States to the Bus Resonator 130
4.3.3 Coupling the NV Spin Ensemble to the Bus Resonator 132
4.4 Storage of Qubit States into a NV Spin Ensemble 134
4.4.1 Storing a Single Photon from the Qubit into the Spin Ensemble 134
4.4.2 Storing a Coherent Superposition from the Qubit to the Spin Ensemble 138
4.4.3 Entanglement Between the Spin Ensemble and the Resonator 141
4.5 Conclusions on Experiment 1: The Write Step 143
References 144
5 Experiment 2 (Read): Multimode Retrieval of Few Photon Fields from a Spin Ensemble 145
5.1 Principle of the Experiment 145
5.2 Experimental Realization 147
5.2.1 The Hybrid Quantum Circuit 147
5.2.2 Measurement Setup 151
5.3 Spectroscopy of the Resonator-Spins System 157
5.3.1 Characterization of the Resonator 158
5.3.2 System Spectroscopy at Zero-Magnetic Field 159
5.4 Active Reset of the Spins 162
5.4.1 Effect of Light Irradiation on the Superconducting Resonator 162
5.4.2 Continuous Irradiation: Dependence of the Spin Polarization on the Optical Power 168
5.4.3 Pulsed Irradiation: Active Spin Polarization 172
5.4.4 Spin Relaxation Time Measurement 177
5.5 Multimode Retrieval of Few Photon Fields Stored in a Spin Ensemble 178
5.5.1 Applying Hahn Echoes to the Spin Ensemble 178
5.5.2 Retrieval of Few-Photon Pulses Stored in the Spin Ensemble 186
5.6 NV Clock Transitions for Long Coherent Storage 193
5.6.1 Atomic Clock Transitions in NV Centers in Diamond 193
5.6.2 Full System Spectroscopy 194
5.6.3 Dependence of the Echo Coherence Time on the Magnetic Field 197
5.6.4 Advanced Analysis: Spin Classes Contributions to the Echo Decay 201
5.7 Conclusion on Experiment 2: The Read Step 207
References 209
6 Towards an Operational Quantum Memory 210
6.1 Reaching Efficient Memory Operations 210
6.1.1 Storage and Retrieval of Photon Fields at the Single Photon Level with Improved Efficiencies 210
6.1.2 Reaching the Operational Level 216
6.2 Running the Full Quantum Memory Protocol 218
6.2.1 Step 1/2: Realization of a Frequency Tunable Resonator Compatible with Refocusing Pulse Applications 218
6.2.2 Realizing a Hybrid Circuit Able to Run the Full Memory Protocol 226
References 229
7 Conclusions and Perspectives 230
References 232
Appendix AFabrication 233
Appendix BNV Center Distribution 235
Curriculum Vitae 238
Erscheint lt. Verlag | 19.8.2015 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XIV, 231 p. 199 illus., 180 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Hybrid quantum processor • Multi-qubit register • nitrogen vacancy center • Quantum information processing • Quantum Memory • Spin-based hybrid circuit • Superconducting quantum processor |
ISBN-10 | 3-319-21572-8 / 3319215728 |
ISBN-13 | 978-3-319-21572-3 / 9783319215723 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich