Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Progress in Optics

Progress in Optics (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
646 Seiten
Elsevier Science (Verlag)
978-0-12-802482-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
160,00 inkl. MwSt
(CHF 156,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Progress in Optics series contains more than 300 review articles by distinguished research workers, which have become permanent records for many important developments, helping optical scientists and optical engineers stay abreast of their fields. - Comprehensive, in-depth reviews - Edited by the leading authority in the field
The Progress in Optics series contains more than 300 review articles by distinguished research workers, which have become permanent records for many important developments, helping optical scientists and optical engineers stay abreast of their fields. - Comprehensive, in-depth reviews- Edited by the leading authority in the field

10 Plasmonic Sources


Many proposals have been made to use surface plasmon polaritons (SPPs) coupled to single-photon sources (Bulu, Babinec, Hausmann, Choy, & Loncar, 2011; Chang, Chen, et al., 2006; Gan, Hugonin, & Lalanne, 2012; Tame et al., 2008).

Surface plasmons, or SPPs, are propagating excitations of charge-density waves and their associated electromagnetic fields on the surface of a conductor. These collective electronic excitations can produce strong electric fields localized to subwavelength distance scales, which make SPPs interesting for several applications. Remarkably, these collective electron states preserve many key quantum mechanical properties of the photons used to excite them, including entanglement (Altewischer, Van Exter, & Woerdman, 2002; Fasel et al., 2005) and sub-Poissonian statistics (Akimov et al., 2007).

A strong theoretical activity started in the first years of 2000s promoting the use of coupled plasmonic structures with single-photon sources. The advantages would be an increased emission probability, due to the enhancement of the electric field produced by the plasmon, and a better extraction. Chang, Chen, et al. (2006) described a method that enables strong, coherent coupling between individual emitters and electromagnetic excitations in conducting nanostructures at optical frequencies, via excitation of guided plasmons localized to nanoscale dimensions. The authors show that under realistic conditions, optical emission can be almost entirely directed into the plasmon modes. The method, that is discussed only theoretically, can be used to create efficient single-photon sources.

Tame et al. (2008) discussed theoretically single-photon excitation of SPPs, considering the quantum description and finding that remarkably high quantum efficiencies can be reached for photon-to-surface plasmon polaritons transfer. The single photon to SPP transfer process may be assessed by measuring the correlation function g(2)(0) which is shown to be unaffected by losses.

Mallek-Zouari et al. (2010) investigated the fluorescence properties of single CdSe/CdS nanocrystals deposited close to a semicontinuous gold film, reporting a reduction by a factor ten of the monoexcitonic state decay rate. A large fraction of the plasmons are converted in the far-field single photons.

Naiki, Masuo, Machida, and Itaya (2011) obtained single-photon emission from isolated CdSe/ZnS QDs exhibiting enhanced fluorescence by interacting with silver nanoparticles.

Bulu et al. (2011) proposed to use plasmonic resonators for enhanced diamond NV-center single-photon sources. They showed theoretically that in an optimized geometry, pumping can be improved by a factor of 7, the spontaneous emission rates can be enhanced up to 50 times over NV centers in a bulk crystal, and collection efficiencies can be as high as 40%, more than 10-fold increase over the bulk.

Gan et al. (2012) discussed a compact solid-state III–V semiconductor single-plasmon source. A sketch of the proposal for the semiconductor single-plasmon source and its coupled-wave model is shown in Figure 43. An SPP channel waveguide with the attached nanocavity is placed near to the QD. The QD first excites the cavity mode, which in turn decays into the SPP.

Figure 43 (a) Sketched geometry composed of a GaAs SPP channel (magenta; dark gray in the print version) on a gold (yellow; light gray in the print version) substrate with a dielectric nanogroove (blue; gray in the print version). The QD is assumed to be linearly polarized along the z-direction; (b), (c1), and (c2) define physical quantities. From Gan et al. (2012).

Akimov et al. (2007) were among the first to experimentally obtaining generation of single optical plasmons in metallic nanowires coupled to quantum dots.

When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire's ends to light up (Figure 44a). Photon correlation demonstrated the generation of single quantized plasmons. Moreover, the efficient coupling was accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission. The light emission at the nanowire end is a result of single, quantized surface plasmons scattering off the ends of the nanowire. This is demonstrated by the dip at t = 0 in the photon coincidence between the free space fluorescence of the quantum dot and emission from the wire end.

Figure 44 (a) A coupled quantum dot can emit either into free space or into the guided surface plasmon of the nanowire with respective rates Γrad, Γpl. (b) Theoretical dependence of the enhancement factor P (solid line) and efficiency of emission into surface plasmons (dashed lines) on distance of the emitter from the nanowire edge. (c, d) Simulations of electric field and Poynting vector. From Akimov et al. (2007).

Schietinger, Barth, Aichele, and Benson (2009) presented a controlled coupling of a single NV center to a plasmonic structure. With the help of an atomic force microscope, a single nanodiamond containing a single NV center and two gold nanospheres was assembled step by step. The excitation rate and the radiative decay rate are enhanced by about one order of magnitude, while the single-photon character of the emission is maintained.

Kolesov et al. (2009) showed that a single-photon source coupled to a silver nanowire is able to excite single SPPs that exhibit wave and particle properties, similar to those of single photons. To generate the SPP, single color centers in diamond nanocrystals were coupled to the metallic waveguide at room temperature (Figure 45). Figure 45b shows the wide-field image of a silver plasmonic waveguide when the laser beam is focused on a single NV defect coupled to the wire. Both ends of the wire show detectable fluorescence, indicating the propagation of plasmons along the wire. To check that single SPPs are excited by the single-photon source, measurements of the second-order correlation function were carried out between the two ends of the wire (Figure 45c). The lowering of the peak at zero delay time provides experimental proof that the plasmon originates from the fluorescence of a single quantum system. It is remarkable that even though a surface plasmon involves a large number of electrons, it behaves like a single quantum particle. A control was made, measuring coincidences between the defect emission and the end of the wire which correspond to the joint detection of a photon and a plasmon. Near perfect anticorrelation was observed. Also a single-plasmon self-interference experiment was successfully done.

Figure 45 (a) Sketch of the Hanbury Brown–Twiss experiment; (b) the fluorescence image of a single quantum emitter; and (c) g(2)(t) of a single NV emitter, showing the lowered value at t = 0. From Kolesov et al. (2009).

Choy et al. (2011) presented a high-yield approach to directly embed single NV centers into metallic nanostructures, leading to a reduction in the spontaneous emission lifetime of the enclosed NV center. They considered plasmonic apertures consisting of cylindrical diamond nanoposts surrounded by silver (Figure 46).

Figure 46 (a) Three-dimensional schematic of the diamond–plasmonic system. A diamond nanopost is embedded in a 500-nm-thick layer of silver. NV fluorescence is excited and collected through the bulk part of the diamond sample, (b) cross-sectional vision, (c) simulated lateral mode profile, and (d) simulated spontaneous emission enhancement for nanoposts with different radii. From Choy et al. (2011).

The device was realized and antibunching was observed.

A source of polarization-entangled photon pairs based on a cross-shaped plasmonic nanoantenna driven by a single quantum dot has been suggested by Maksymov, Miroshnichenko, and Kivshar (2012).

Enhancement of two-photon emission in the vicinity of metallic nanoparticles due to surface plasmon resonances was discussed by Poddubny, Ginzburg, Belov, Zayats, and Kivshar (2012).

11 Application to Quantum Information Processing


The challenge for the development of quantum information technologies is having reliable and efficient sources to produce, distribute, and detect entangled states (see, for example, Walmsley & Raymer, 2005). Although sources of entanglement have been described and demonstrated in many branches of physics, so far the most common way to distribute entanglement is by means of pairs of photons. The most reliable source of entanglement between photons is the spontaneous parametric down-conversion process as discussed previously. Of great importance is to have an accurate description of the distribution of the generated entangled states.

In realistic applications, where pure entangled states become mixed states it is crucial to discriminate the nature of different types of noise introduced by the emission process itself, due to imperfections in the collections or in the transmission of the entangled pairs, as discussed by Bovino (2013b), where a method to discriminate the different noise contribution in a Quantum Key...

Erscheint lt. Verlag 14.6.2015
Mitarbeit Herausgeber (Serie): Emil Wolf
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Optik
Technik
ISBN-10 0-12-802482-8 / 0128024828
ISBN-13 978-0-12-802482-9 / 9780128024829
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 22,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 36,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Bahaa E. A. Saleh; Malvin Carl Teich

eBook Download (2020)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 82,95